Iurii Nesterenko, Benjamin Kalas, Thang Duy Dao, Julian Schulze, Nikolai Andrianov
{"title":"C4F8/H2混合气体中电感耦合等离子体选择性SiO2/光刻胶反应离子刻蚀机理","authors":"Iurii Nesterenko, Benjamin Kalas, Thang Duy Dao, Julian Schulze, Nikolai Andrianov","doi":"10.1063/5.0238676","DOIUrl":null,"url":null,"abstract":"A reactive ion etch process that achieves high selectivity between SiO2 and photoresist (PR) and based on C4F8/H2 chemistry in an inductively coupled radio frequency plasma is developed. The process is accompanied by the formation of a fluorocarbon film, which defines key process characteristics. The SiO2 etching is described as a sum of two competing mechanisms: (i) an inhibition mechanism related to fluorocarbon film deposition and (ii) a defluorination mechanism, describing the diffusion of etching species to the CxFy/SiO2 interface. However, the photoresist etch rate is primarily determined by the inhibition mechanism. In order to achieve high SiO2/PR selectivity, both mechanisms are studied as functions of hydrogen admixture, pressure, gas residence time, and substrate temperature. This study reveals that depending on the superposition of the process parameters, one of the mechanisms can prevail over the other one, which significantly affects etch rates and selectivity. By adjusting the process parameters, a maximum selectivity between SiO2 and PR of 8 is achieved corresponding to a SiO2 etch rate of 200 nm/min.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of selective SiO2/photoresist reactive ion etching in an inductively coupled plasma operated in a C4F8/H2 gas mixture\",\"authors\":\"Iurii Nesterenko, Benjamin Kalas, Thang Duy Dao, Julian Schulze, Nikolai Andrianov\",\"doi\":\"10.1063/5.0238676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reactive ion etch process that achieves high selectivity between SiO2 and photoresist (PR) and based on C4F8/H2 chemistry in an inductively coupled radio frequency plasma is developed. The process is accompanied by the formation of a fluorocarbon film, which defines key process characteristics. The SiO2 etching is described as a sum of two competing mechanisms: (i) an inhibition mechanism related to fluorocarbon film deposition and (ii) a defluorination mechanism, describing the diffusion of etching species to the CxFy/SiO2 interface. However, the photoresist etch rate is primarily determined by the inhibition mechanism. In order to achieve high SiO2/PR selectivity, both mechanisms are studied as functions of hydrogen admixture, pressure, gas residence time, and substrate temperature. This study reveals that depending on the superposition of the process parameters, one of the mechanisms can prevail over the other one, which significantly affects etch rates and selectivity. By adjusting the process parameters, a maximum selectivity between SiO2 and PR of 8 is achieved corresponding to a SiO2 etch rate of 200 nm/min.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0238676\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0238676","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Mechanism of selective SiO2/photoresist reactive ion etching in an inductively coupled plasma operated in a C4F8/H2 gas mixture
A reactive ion etch process that achieves high selectivity between SiO2 and photoresist (PR) and based on C4F8/H2 chemistry in an inductively coupled radio frequency plasma is developed. The process is accompanied by the formation of a fluorocarbon film, which defines key process characteristics. The SiO2 etching is described as a sum of two competing mechanisms: (i) an inhibition mechanism related to fluorocarbon film deposition and (ii) a defluorination mechanism, describing the diffusion of etching species to the CxFy/SiO2 interface. However, the photoresist etch rate is primarily determined by the inhibition mechanism. In order to achieve high SiO2/PR selectivity, both mechanisms are studied as functions of hydrogen admixture, pressure, gas residence time, and substrate temperature. This study reveals that depending on the superposition of the process parameters, one of the mechanisms can prevail over the other one, which significantly affects etch rates and selectivity. By adjusting the process parameters, a maximum selectivity between SiO2 and PR of 8 is achieved corresponding to a SiO2 etch rate of 200 nm/min.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.