利用五层菱形石墨烯中的铁谷性用于存储和计算

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Md Mazharul Islam, Shamiul Alam, Md Rahatul Islam Udoy, Md Shafayat Hossain, Kathleen E Hamilton, Ahmedullah Aziz
{"title":"利用五层菱形石墨烯中的铁谷性用于存储和计算","authors":"Md Mazharul Islam, Shamiul Alam, Md Rahatul Islam Udoy, Md Shafayat Hossain, Kathleen E Hamilton, Ahmedullah Aziz","doi":"10.1063/5.0231749","DOIUrl":null,"url":null,"abstract":"Two-dimensional materials with multiple degrees of freedom, including spin, valleys, and orbitals, open up an exciting avenue for engineering multifunctional devices. Beyond spintronics, these degrees of freedom can lead to novel quantum effects such as valley-dependent Hall effects and orbital magnetism, which could revolutionize next-generation electronics. However, achieving independent control over valley polarization and orbital magnetism has been a challenge due to the need for large electric fields. A recent breakthrough involving pentalayer rhombohedral graphene has demonstrated the ability to individually manipulate anomalous Hall signals and orbital magnetic hysteresis, forming what is known as a valley-magnetic quartet. Here, we leverage the electrically tunable ferro-valleytricity of pentalayer rhombohedral graphene to develop nonvolatile memory and in-memory computation applications. We propose an architecture for a dense, scalable, and selector-less nonvolatile memory array that harnesses the electrically tunable ferro-valleytricity. In our designed array architecture, nondestructive read and write operations are conducted by sensing the valley state through two different pairs of terminals, allowing for independent optimization of read/write peripheral circuits. The power consumption of our PRG-based array is remarkably low, with only ∼6 nW required per write operation and ∼2.3 nW per read operation per cell. This consumption is orders of magnitude lower than that of the majority of state-of-the-art cryogenic memories. Additionally, we engineer in-memory computation by implementing majority logic operations within our proposed nonvolatile memory array without modifying the peripheral circuitry. Our framework presents a promising pathway toward achieving ultra-dense cryogenic memory and in-memory computation capabilities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"48 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing ferro-valleytricity in pentalayer rhombohedral graphene for memory and compute\",\"authors\":\"Md Mazharul Islam, Shamiul Alam, Md Rahatul Islam Udoy, Md Shafayat Hossain, Kathleen E Hamilton, Ahmedullah Aziz\",\"doi\":\"10.1063/5.0231749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional materials with multiple degrees of freedom, including spin, valleys, and orbitals, open up an exciting avenue for engineering multifunctional devices. Beyond spintronics, these degrees of freedom can lead to novel quantum effects such as valley-dependent Hall effects and orbital magnetism, which could revolutionize next-generation electronics. However, achieving independent control over valley polarization and orbital magnetism has been a challenge due to the need for large electric fields. A recent breakthrough involving pentalayer rhombohedral graphene has demonstrated the ability to individually manipulate anomalous Hall signals and orbital magnetic hysteresis, forming what is known as a valley-magnetic quartet. Here, we leverage the electrically tunable ferro-valleytricity of pentalayer rhombohedral graphene to develop nonvolatile memory and in-memory computation applications. We propose an architecture for a dense, scalable, and selector-less nonvolatile memory array that harnesses the electrically tunable ferro-valleytricity. In our designed array architecture, nondestructive read and write operations are conducted by sensing the valley state through two different pairs of terminals, allowing for independent optimization of read/write peripheral circuits. The power consumption of our PRG-based array is remarkably low, with only ∼6 nW required per write operation and ∼2.3 nW per read operation per cell. This consumption is orders of magnitude lower than that of the majority of state-of-the-art cryogenic memories. Additionally, we engineer in-memory computation by implementing majority logic operations within our proposed nonvolatile memory array without modifying the peripheral circuitry. Our framework presents a promising pathway toward achieving ultra-dense cryogenic memory and in-memory computation capabilities.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231749\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231749","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有多个自由度的二维材料,包括自旋、谷和轨道,为工程多功能器件开辟了一条令人兴奋的道路。除了自旋电子学,这些自由度还可以导致新的量子效应,如谷相关霍尔效应和轨道磁性,这可能会彻底改变下一代电子学。然而,由于需要大电场,实现对谷极化和轨道磁性的独立控制一直是一个挑战。最近一项涉及五层菱形石墨烯的突破证明了单独操纵异常霍尔信号和轨道磁滞的能力,形成了所谓的谷磁四重奏。在这里,我们利用五层菱形石墨烯的电可调谐铁谷来开发非易失性存储器和内存计算应用。我们提出了一种密集的、可扩展的、无选择器的非易失性存储器阵列的架构,该阵列利用电可调谐铁谷。在我们设计的阵列架构中,通过两对不同的终端感应谷态来进行无损读写操作,从而允许独立优化读写外围电路。我们基于prg的阵列的功耗非常低,每个单元每次写入操作只需要~ 6 nW,每次读取操作只需要~ 2.3 nW。这种消耗比大多数最先进的低温存储器的消耗要低几个数量级。此外,我们通过在我们提出的非易失性存储器阵列中实现多数逻辑操作来设计内存计算,而无需修改外围电路。我们的框架为实现超密集低温存储器和内存计算能力提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing ferro-valleytricity in pentalayer rhombohedral graphene for memory and compute
Two-dimensional materials with multiple degrees of freedom, including spin, valleys, and orbitals, open up an exciting avenue for engineering multifunctional devices. Beyond spintronics, these degrees of freedom can lead to novel quantum effects such as valley-dependent Hall effects and orbital magnetism, which could revolutionize next-generation electronics. However, achieving independent control over valley polarization and orbital magnetism has been a challenge due to the need for large electric fields. A recent breakthrough involving pentalayer rhombohedral graphene has demonstrated the ability to individually manipulate anomalous Hall signals and orbital magnetic hysteresis, forming what is known as a valley-magnetic quartet. Here, we leverage the electrically tunable ferro-valleytricity of pentalayer rhombohedral graphene to develop nonvolatile memory and in-memory computation applications. We propose an architecture for a dense, scalable, and selector-less nonvolatile memory array that harnesses the electrically tunable ferro-valleytricity. In our designed array architecture, nondestructive read and write operations are conducted by sensing the valley state through two different pairs of terminals, allowing for independent optimization of read/write peripheral circuits. The power consumption of our PRG-based array is remarkably low, with only ∼6 nW required per write operation and ∼2.3 nW per read operation per cell. This consumption is orders of magnitude lower than that of the majority of state-of-the-art cryogenic memories. Additionally, we engineer in-memory computation by implementing majority logic operations within our proposed nonvolatile memory array without modifying the peripheral circuitry. Our framework presents a promising pathway toward achieving ultra-dense cryogenic memory and in-memory computation capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信