Endao Han, Chenyi Fei, Ricard Alert, Katherine Copenhagen, Matthias D. Koch, Ned S. Wingreen, Joshua W. Shaevitz
{"title":"局部极性顺序控制机械应力并触发黄粘球菌菌落的层形成","authors":"Endao Han, Chenyi Fei, Ricard Alert, Katherine Copenhagen, Matthias D. Koch, Ned S. Wingreen, Joshua W. Shaevitz","doi":"10.1038/s41467-024-55806-6","DOIUrl":null,"url":null,"abstract":"<p>Colonies of the social bacterium <i>Myxococcus xanthus</i> go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find that <i>M. xanthus</i> cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies\",\"authors\":\"Endao Han, Chenyi Fei, Ricard Alert, Katherine Copenhagen, Matthias D. Koch, Ned S. Wingreen, Joshua W. Shaevitz\",\"doi\":\"10.1038/s41467-024-55806-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colonies of the social bacterium <i>Myxococcus xanthus</i> go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find that <i>M. xanthus</i> cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55806-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55806-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find that M. xanthus cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.