Lei Wu, Zhiyan Hu, Lei Liang, Ruijin Hu, Junzhuan Wang, Linwei Yu
{"title":"用于高性能场效应晶体管的硅纳米线通道的阶梯颈缩生长","authors":"Lei Wu, Zhiyan Hu, Lei Liang, Ruijin Hu, Junzhuan Wang, Linwei Yu","doi":"10.1038/s41467-025-56376-x","DOIUrl":null,"url":null,"abstract":"<p>Ultrathin silicon nanowires (diameter <30 nm) with strong electrostatic control are ideal quasi-1D channel materials for high-performance field effect transistors, while a short channel is desirable to enhance driving current. Typically, the patterning of such delicate channels relies on high-precision lithography, which is not applicable for large area electronics. In this work, we demonstrate that ultrathin and short silicon nanowires channels can be created through a local-curvature-modulated catalytic growth, where a planar silicon nanowires is directed to jump over a crossing step. During the jumping dynamic, the leading droplet undergoes significant stretching, producing a short necking segment of <100 nm in length, with a reduced diameter from approximately 45 nm to <25 nm. Compared to the FETs with uniform silicon nanowire channels, our step-necked silicon nanowire FETs exhibit substantially enhanced on/off current ratio I<sub>on/off</sub> > 8 × 10<sup>7</sup> and a sharper subthreshold swing of 70 mV/dec, thanks to a stronger gating effect in the middle channel and markedly improved electric contacts at the thicker source/drain ends. These findings mark the pioneering experimental demonstration of catalytic growth acting as a deterministic fabrication method for precisely crafting engineered FET channels, ideally fitting the requirements of high-performance large-area displays and sensors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-necking growth of silicon nanowire channels for high performance field effect transistors\",\"authors\":\"Lei Wu, Zhiyan Hu, Lei Liang, Ruijin Hu, Junzhuan Wang, Linwei Yu\",\"doi\":\"10.1038/s41467-025-56376-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultrathin silicon nanowires (diameter <30 nm) with strong electrostatic control are ideal quasi-1D channel materials for high-performance field effect transistors, while a short channel is desirable to enhance driving current. Typically, the patterning of such delicate channels relies on high-precision lithography, which is not applicable for large area electronics. In this work, we demonstrate that ultrathin and short silicon nanowires channels can be created through a local-curvature-modulated catalytic growth, where a planar silicon nanowires is directed to jump over a crossing step. During the jumping dynamic, the leading droplet undergoes significant stretching, producing a short necking segment of <100 nm in length, with a reduced diameter from approximately 45 nm to <25 nm. Compared to the FETs with uniform silicon nanowire channels, our step-necked silicon nanowire FETs exhibit substantially enhanced on/off current ratio I<sub>on/off</sub> > 8 × 10<sup>7</sup> and a sharper subthreshold swing of 70 mV/dec, thanks to a stronger gating effect in the middle channel and markedly improved electric contacts at the thicker source/drain ends. These findings mark the pioneering experimental demonstration of catalytic growth acting as a deterministic fabrication method for precisely crafting engineered FET channels, ideally fitting the requirements of high-performance large-area displays and sensors.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56376-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56376-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Step-necking growth of silicon nanowire channels for high performance field effect transistors
Ultrathin silicon nanowires (diameter <30 nm) with strong electrostatic control are ideal quasi-1D channel materials for high-performance field effect transistors, while a short channel is desirable to enhance driving current. Typically, the patterning of such delicate channels relies on high-precision lithography, which is not applicable for large area electronics. In this work, we demonstrate that ultrathin and short silicon nanowires channels can be created through a local-curvature-modulated catalytic growth, where a planar silicon nanowires is directed to jump over a crossing step. During the jumping dynamic, the leading droplet undergoes significant stretching, producing a short necking segment of <100 nm in length, with a reduced diameter from approximately 45 nm to <25 nm. Compared to the FETs with uniform silicon nanowire channels, our step-necked silicon nanowire FETs exhibit substantially enhanced on/off current ratio Ion/off > 8 × 107 and a sharper subthreshold swing of 70 mV/dec, thanks to a stronger gating effect in the middle channel and markedly improved electric contacts at the thicker source/drain ends. These findings mark the pioneering experimental demonstration of catalytic growth acting as a deterministic fabrication method for precisely crafting engineered FET channels, ideally fitting the requirements of high-performance large-area displays and sensors.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.