Zheming Chen, YuShuang Lin, Dehuan Shi, Kangwei Song, Jing Luo, Yanbin Qiu, Zheyuan Liu, Yan Yu, Chengkai Yang
{"title":"无枝晶锌离子电池用亲疏水协同集成的合理层次胶束凝胶电解质","authors":"Zheming Chen, YuShuang Lin, Dehuan Shi, Kangwei Song, Jing Luo, Yanbin Qiu, Zheyuan Liu, Yan Yu, Chengkai Yang","doi":"10.1039/d4ta08537j","DOIUrl":null,"url":null,"abstract":"The uncontrolled dendritic growth and severe side reactions significantly constrain Zinc-ion batteries’ further application. This study presents a novel micellar gel electrolyte, innovatively designed through hydrophobic association. The micellar gel electrolyte harmonizes macroscopic and microscopic properties through a rational hierarchical design. At the macroscopic level, the hydrophilic domains as water-absorbing nets and the hydrophobic domains as pillars are intricately interwoven. On the microscopic scale, the copolymerization resulted in a microphase-separated architecture, with hydrophilic and hydrophobic domains establishing distinct micro-regions within the gel matrix. The hydrophilic domains contribute to the stabilization of the hydrogen bond network through amide groups, while the abundant carbonyl groups optimize the solvation structure and migration pathways of Zn2+. The hydrophobic domains provide a robust supporting framework, while simultaneously reduces H2O activity, and thereby minimizing parasitic reactions. Thus, the enhanced interfacial stability forms a robust and flexible barrier against dendrite formation. The rational hierarchical gel composition and cross-linked network effectively direct Zn deposition preferentially along the (002) plane, ensuring a uniform and stable interface. The assembled Zn||MnO2 batteries maintain 80% capacity retention after 1200 cycles at 1C.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"12 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Hierarchical Micellar Gel-Electrolytes with Synergistic Hydrophobic-Hydrophilic Integration for Dendrite-Free Zinc-Ion Batteries\",\"authors\":\"Zheming Chen, YuShuang Lin, Dehuan Shi, Kangwei Song, Jing Luo, Yanbin Qiu, Zheyuan Liu, Yan Yu, Chengkai Yang\",\"doi\":\"10.1039/d4ta08537j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncontrolled dendritic growth and severe side reactions significantly constrain Zinc-ion batteries’ further application. This study presents a novel micellar gel electrolyte, innovatively designed through hydrophobic association. The micellar gel electrolyte harmonizes macroscopic and microscopic properties through a rational hierarchical design. At the macroscopic level, the hydrophilic domains as water-absorbing nets and the hydrophobic domains as pillars are intricately interwoven. On the microscopic scale, the copolymerization resulted in a microphase-separated architecture, with hydrophilic and hydrophobic domains establishing distinct micro-regions within the gel matrix. The hydrophilic domains contribute to the stabilization of the hydrogen bond network through amide groups, while the abundant carbonyl groups optimize the solvation structure and migration pathways of Zn2+. The hydrophobic domains provide a robust supporting framework, while simultaneously reduces H2O activity, and thereby minimizing parasitic reactions. Thus, the enhanced interfacial stability forms a robust and flexible barrier against dendrite formation. The rational hierarchical gel composition and cross-linked network effectively direct Zn deposition preferentially along the (002) plane, ensuring a uniform and stable interface. The assembled Zn||MnO2 batteries maintain 80% capacity retention after 1200 cycles at 1C.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta08537j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta08537j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rational Hierarchical Micellar Gel-Electrolytes with Synergistic Hydrophobic-Hydrophilic Integration for Dendrite-Free Zinc-Ion Batteries
The uncontrolled dendritic growth and severe side reactions significantly constrain Zinc-ion batteries’ further application. This study presents a novel micellar gel electrolyte, innovatively designed through hydrophobic association. The micellar gel electrolyte harmonizes macroscopic and microscopic properties through a rational hierarchical design. At the macroscopic level, the hydrophilic domains as water-absorbing nets and the hydrophobic domains as pillars are intricately interwoven. On the microscopic scale, the copolymerization resulted in a microphase-separated architecture, with hydrophilic and hydrophobic domains establishing distinct micro-regions within the gel matrix. The hydrophilic domains contribute to the stabilization of the hydrogen bond network through amide groups, while the abundant carbonyl groups optimize the solvation structure and migration pathways of Zn2+. The hydrophobic domains provide a robust supporting framework, while simultaneously reduces H2O activity, and thereby minimizing parasitic reactions. Thus, the enhanced interfacial stability forms a robust and flexible barrier against dendrite formation. The rational hierarchical gel composition and cross-linked network effectively direct Zn deposition preferentially along the (002) plane, ensuring a uniform and stable interface. The assembled Zn||MnO2 batteries maintain 80% capacity retention after 1200 cycles at 1C.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.