基于深度学习和局部集合更新的数据同化方法的降雨径流模型参数估计和不确定性量化

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lei Yao , Jiangjiang Zhang , Chenglong Cao , Feifei Zheng
{"title":"基于深度学习和局部集合更新的数据同化方法的降雨径流模型参数估计和不确定性量化","authors":"Lei Yao ,&nbsp;Jiangjiang Zhang ,&nbsp;Chenglong Cao ,&nbsp;Feifei Zheng","doi":"10.1016/j.envsoft.2025.106332","DOIUrl":null,"url":null,"abstract":"<div><div>Rainfall-runoff (RR) modeling is crucial for flood preparedness and water resource management. Accurate RR model predictions depend on effective parameter estimation and uncertainty quantification using observed data through data assimilation (DA). Traditional DA methods often struggle with challenges such as non-Gaussianity and equifinality. To address these challenges, this study introduces two ensemble smoother methods, i.e., ES<sub>DL</sub> with a deep learning-based update, and ES<sub>LU</sub> with a local ensemble update, aiming to enhance the calibration of RR models. To demonstrate the effectiveness of our proposed methods, we conduct a comprehensive analysis involving various DA techniques applied to parameter estimation of RR models. We compare these methods with traditional approaches, evaluating deep neural network architectures, iteration numbers, and measurement errors. The results unequivocally showcase the consistent reliability of ES<sub>DL</sub> and ES<sub>LU</sub>, especially the latter one, across diverse scenarios, establishing them as promising approaches for the effective calibration and uncertainty quantification of RR models.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106332"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation and uncertainty quantification of rainfall-runoff models using data assimilation methods based on deep learning and local ensemble updates\",\"authors\":\"Lei Yao ,&nbsp;Jiangjiang Zhang ,&nbsp;Chenglong Cao ,&nbsp;Feifei Zheng\",\"doi\":\"10.1016/j.envsoft.2025.106332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rainfall-runoff (RR) modeling is crucial for flood preparedness and water resource management. Accurate RR model predictions depend on effective parameter estimation and uncertainty quantification using observed data through data assimilation (DA). Traditional DA methods often struggle with challenges such as non-Gaussianity and equifinality. To address these challenges, this study introduces two ensemble smoother methods, i.e., ES<sub>DL</sub> with a deep learning-based update, and ES<sub>LU</sub> with a local ensemble update, aiming to enhance the calibration of RR models. To demonstrate the effectiveness of our proposed methods, we conduct a comprehensive analysis involving various DA techniques applied to parameter estimation of RR models. We compare these methods with traditional approaches, evaluating deep neural network architectures, iteration numbers, and measurement errors. The results unequivocally showcase the consistent reliability of ES<sub>DL</sub> and ES<sub>LU</sub>, especially the latter one, across diverse scenarios, establishing them as promising approaches for the effective calibration and uncertainty quantification of RR models.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106332\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225000167\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000167","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

降雨径流(RR)模型对防洪和水资源管理至关重要。准确的RR模型预测依赖于通过数据同化(DA)对观测数据进行有效的参数估计和不确定性量化。传统的数据分析方法经常面临非高斯性和等价性等问题。为了解决这些问题,本研究引入了两种集成平滑方法,即基于深度学习更新的ESDL和基于局部集成更新的ESLU,旨在增强RR模型的校准。为了证明我们提出的方法的有效性,我们进行了综合分析,涉及各种数据挖掘技术应用于RR模型的参数估计。我们将这些方法与传统方法进行比较,评估深度神经网络架构、迭代次数和测量误差。结果明确表明,ESDL和ESLU在不同情景下具有一致的可靠性,特别是后者,这表明它们是有效校准和不确定度量化RR模型的有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation and uncertainty quantification of rainfall-runoff models using data assimilation methods based on deep learning and local ensemble updates
Rainfall-runoff (RR) modeling is crucial for flood preparedness and water resource management. Accurate RR model predictions depend on effective parameter estimation and uncertainty quantification using observed data through data assimilation (DA). Traditional DA methods often struggle with challenges such as non-Gaussianity and equifinality. To address these challenges, this study introduces two ensemble smoother methods, i.e., ESDL with a deep learning-based update, and ESLU with a local ensemble update, aiming to enhance the calibration of RR models. To demonstrate the effectiveness of our proposed methods, we conduct a comprehensive analysis involving various DA techniques applied to parameter estimation of RR models. We compare these methods with traditional approaches, evaluating deep neural network architectures, iteration numbers, and measurement errors. The results unequivocally showcase the consistent reliability of ESDL and ESLU, especially the latter one, across diverse scenarios, establishing them as promising approaches for the effective calibration and uncertainty quantification of RR models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信