Floran Clopin , Ilaria Micella , Jorrit P. Mesman , Ma Cristina Paule-Mercado , Marina Amadori , Shuqi Lin , Lisette N. de Senerpont Domis , Jeroen J.M. de Klein
{"title":"湖泊与水库流域营养动态综合模型:系统综述与综合建模决策途径","authors":"Floran Clopin , Ilaria Micella , Jorrit P. Mesman , Ma Cristina Paule-Mercado , Marina Amadori , Shuqi Lin , Lisette N. de Senerpont Domis , Jeroen J.M. de Klein","doi":"10.1016/j.envsoft.2025.106321","DOIUrl":null,"url":null,"abstract":"<div><div>Eutrophication of inland water bodies is a serious environmental threat. This review explores current integrated models for lake and reservoir ecosystems that focus on nutrient dynamics at a catchment scale. Many studies applied either watershed or lake/reservoir models, however, 49 studies were finally selected that combined both. We derived a list of 21 watershed models, 23 lake/reservoir models, and 6 hybrid models in different sets of combinations, with a range of objectives (e.g. understanding the natural processes, predicting, and analysing climate change and land-use scenarios, or evaluating the different management options). Some integrated models had multiple applications whereas others were only applied once, with an uneven global geographical distribution.</div><div>To aid model selection by future users, we present a support tool discriminating the models by their features and application fields. This study encourages the development of open-source tools aiding interdisciplinary collaborations and further research in the field of integrated modelling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106321"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated models of nutrient dynamics in lake and reservoir watersheds: A systematic review and integrated modelling decision pathway\",\"authors\":\"Floran Clopin , Ilaria Micella , Jorrit P. Mesman , Ma Cristina Paule-Mercado , Marina Amadori , Shuqi Lin , Lisette N. de Senerpont Domis , Jeroen J.M. de Klein\",\"doi\":\"10.1016/j.envsoft.2025.106321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Eutrophication of inland water bodies is a serious environmental threat. This review explores current integrated models for lake and reservoir ecosystems that focus on nutrient dynamics at a catchment scale. Many studies applied either watershed or lake/reservoir models, however, 49 studies were finally selected that combined both. We derived a list of 21 watershed models, 23 lake/reservoir models, and 6 hybrid models in different sets of combinations, with a range of objectives (e.g. understanding the natural processes, predicting, and analysing climate change and land-use scenarios, or evaluating the different management options). Some integrated models had multiple applications whereas others were only applied once, with an uneven global geographical distribution.</div><div>To aid model selection by future users, we present a support tool discriminating the models by their features and application fields. This study encourages the development of open-source tools aiding interdisciplinary collaborations and further research in the field of integrated modelling.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106321\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225000052\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000052","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrated models of nutrient dynamics in lake and reservoir watersheds: A systematic review and integrated modelling decision pathway
Eutrophication of inland water bodies is a serious environmental threat. This review explores current integrated models for lake and reservoir ecosystems that focus on nutrient dynamics at a catchment scale. Many studies applied either watershed or lake/reservoir models, however, 49 studies were finally selected that combined both. We derived a list of 21 watershed models, 23 lake/reservoir models, and 6 hybrid models in different sets of combinations, with a range of objectives (e.g. understanding the natural processes, predicting, and analysing climate change and land-use scenarios, or evaluating the different management options). Some integrated models had multiple applications whereas others were only applied once, with an uneven global geographical distribution.
To aid model selection by future users, we present a support tool discriminating the models by their features and application fields. This study encourages the development of open-source tools aiding interdisciplinary collaborations and further research in the field of integrated modelling.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.