变矩阵系数Sobolev方程的高效高阶弱Galerkin有限元法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Eric Ngondiep
{"title":"变矩阵系数Sobolev方程的高效高阶弱Galerkin有限元法","authors":"Eric Ngondiep","doi":"10.1016/j.camwa.2025.01.013","DOIUrl":null,"url":null,"abstract":"This paper constructs a high-order weak Galerkin finite element method for solving a two-dimensional Sobolev equation with variable matrix coefficients subjects to initial and boundary conditions. The proposed approach approximates the exact solution in time using interpolation techniques whereas the space derivatives are approximated by weak forms through integration by parts. The new algorithm is unconditionally stable, temporal second order convergence and spatial accurate with convergence order <mml:math altimg=\"si1.svg\"><mml:mi>O</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo></mml:math>, in the <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>;</mml:mo><mml:mspace width=\"0.20em\"></mml:mspace><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo></mml:math>-norm, where <ce:italic>p</ce:italic> is a nonnegative integer and <ce:italic>h</ce:italic> represents the grid space. The developed computational scheme is faster and more efficient than a broad range of numerical methods deeply studied in the literature for solving Sobolev problems. Some numerical examples are carried out to confirm the theory and to investigate the performance and validity of the constructed high-order numerical scheme.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient high-order weak Galerkin finite element approach for Sobolev equation with variable matrix coefficients\",\"authors\":\"Eric Ngondiep\",\"doi\":\"10.1016/j.camwa.2025.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper constructs a high-order weak Galerkin finite element method for solving a two-dimensional Sobolev equation with variable matrix coefficients subjects to initial and boundary conditions. The proposed approach approximates the exact solution in time using interpolation techniques whereas the space derivatives are approximated by weak forms through integration by parts. The new algorithm is unconditionally stable, temporal second order convergence and spatial accurate with convergence order <mml:math altimg=\\\"si1.svg\\\"><mml:mi>O</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math>, in the <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub><mml:mo>;</mml:mo><mml:mspace width=\\\"0.20em\\\"></mml:mspace><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math>-norm, where <ce:italic>p</ce:italic> is a nonnegative integer and <ce:italic>h</ce:italic> represents the grid space. The developed computational scheme is faster and more efficient than a broad range of numerical methods deeply studied in the literature for solving Sobolev problems. Some numerical examples are carried out to confirm the theory and to investigate the performance and validity of the constructed high-order numerical scheme.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2025.01.013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了具有初始条件和边界条件的二维变矩阵系数Sobolev方程的高阶弱Galerkin有限元解法。该方法利用插值技术在时间上逼近精确解,而空间导数则通过局部积分的弱形式逼近。新算法在L∞(0,Tf;H1)范数下无条件稳定,时间二阶收敛,空间精确,收敛阶为O(hp+1),其中p为非负整数,h表示网格空间。所开发的计算格式比文献中广泛研究的求解Sobolev问题的数值方法更快、更有效。通过数值算例验证了该理论,并对所构建的高阶数值格式的性能和有效性进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient high-order weak Galerkin finite element approach for Sobolev equation with variable matrix coefficients
This paper constructs a high-order weak Galerkin finite element method for solving a two-dimensional Sobolev equation with variable matrix coefficients subjects to initial and boundary conditions. The proposed approach approximates the exact solution in time using interpolation techniques whereas the space derivatives are approximated by weak forms through integration by parts. The new algorithm is unconditionally stable, temporal second order convergence and spatial accurate with convergence order O(hp+1), in the L(0,Tf;H1)-norm, where p is a nonnegative integer and h represents the grid space. The developed computational scheme is faster and more efficient than a broad range of numerical methods deeply studied in the literature for solving Sobolev problems. Some numerical examples are carried out to confirm the theory and to investigate the performance and validity of the constructed high-order numerical scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信