静止不可压缩无感应MHD方程的皮卡德-牛顿有限元迭代分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaodi Zhang, Meiying Zhang, Xianghai Zhou
{"title":"静止不可压缩无感应MHD方程的皮卡德-牛顿有限元迭代分析","authors":"Xiaodi Zhang, Meiying Zhang, Xianghai Zhou","doi":"10.1016/j.camwa.2025.01.016","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze the Picard-Newton finite element iteration for the stationary incompressible inductionless magnetohydrodynamics (MHD) equations. In finite element discretization, the hydrodynamic unknowns are approximated by stable finite element pairs, and the electromagnetic system is discretized by using the face-volume pairs. To solve the nonlinear discretized problem efficiently, our method consists of first applying the Picard iteration and then applying the Newton iteration. The Picard-Newton iteration is proved to be globally stable under the uniqueness condition and quadratically convergent under the stronger uniqueness condition. Thanks to the improved stability property, this solver has a larger convergence basin than the usual Newton iteration. Numerical tests confirm our theoretical analysis and show that the Picard-Newton iteration dramatically excels both the Picard and Newton iterations in several benchmark problems.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Picard-Newton finite element iteration for the stationary incompressible inductionless MHD equations\",\"authors\":\"Xiaodi Zhang, Meiying Zhang, Xianghai Zhou\",\"doi\":\"10.1016/j.camwa.2025.01.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and analyze the Picard-Newton finite element iteration for the stationary incompressible inductionless magnetohydrodynamics (MHD) equations. In finite element discretization, the hydrodynamic unknowns are approximated by stable finite element pairs, and the electromagnetic system is discretized by using the face-volume pairs. To solve the nonlinear discretized problem efficiently, our method consists of first applying the Picard iteration and then applying the Newton iteration. The Picard-Newton iteration is proved to be globally stable under the uniqueness condition and quadratically convergent under the stronger uniqueness condition. Thanks to the improved stability property, this solver has a larger convergence basin than the usual Newton iteration. Numerical tests confirm our theoretical analysis and show that the Picard-Newton iteration dramatically excels both the Picard and Newton iterations in several benchmark problems.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2025.01.016\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并分析了静止不可压缩无感磁流体动力学(MHD)方程的皮卡德-牛顿有限元迭代。在有限元离散中,流体动力未知量用稳定有限元对逼近,电磁系统用面-体对离散。为了有效地求解非线性离散化问题,首先采用皮卡德迭代法,然后采用牛顿迭代法。证明了皮卡德-牛顿迭代在唯一性条件下是全局稳定的,在强唯一性条件下是二次收敛的。由于改进了算法的稳定性,该算法比一般的牛顿迭代具有更大的收敛盆。数值测试证实了我们的理论分析,并表明皮卡德-牛顿迭代在一些基准问题上显著优于皮卡德和牛顿迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Picard-Newton finite element iteration for the stationary incompressible inductionless MHD equations
In this paper, we propose and analyze the Picard-Newton finite element iteration for the stationary incompressible inductionless magnetohydrodynamics (MHD) equations. In finite element discretization, the hydrodynamic unknowns are approximated by stable finite element pairs, and the electromagnetic system is discretized by using the face-volume pairs. To solve the nonlinear discretized problem efficiently, our method consists of first applying the Picard iteration and then applying the Newton iteration. The Picard-Newton iteration is proved to be globally stable under the uniqueness condition and quadratically convergent under the stronger uniqueness condition. Thanks to the improved stability property, this solver has a larger convergence basin than the usual Newton iteration. Numerical tests confirm our theoretical analysis and show that the Picard-Newton iteration dramatically excels both the Picard and Newton iterations in several benchmark problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信