屏蔽抛物方程的ω-循环预调节器

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Po Yin Fung, Sean Y. Hon
{"title":"屏蔽抛物方程的ω-循环预调节器","authors":"Po Yin Fung, Sean Y. Hon","doi":"10.1016/j.camwa.2025.01.019","DOIUrl":null,"url":null,"abstract":"In this study, a novel class of block <ce:italic>ω</ce:italic>-circulant preconditioners is developed for the all-at-once linear system that emerges from solving parabolic equations using first and second order discretization schemes for time. We establish a unifying preconditioning framework for <ce:italic>ω</ce:italic>-circulant preconditioners, extending and modifying the preconditioning approach recently proposed in (Zhang and Xu, 2024 <ce:cross-ref ref>[27]</ce:cross-ref>) and integrating some existing results in the literature. The proposed preconditioners leverage fast Fourier transforms for efficient diagonalization, facilitating parallel-in-time execution. Theoretically, these preconditioners ensure that eigenvalue clustering around ±1 is achieved, fostering fast convergence under the minimal residual method. Furthermore, when using the generalized minimal residual method, the effectiveness of these preconditioners is supported by the singular value clustering at unity. Numerical experiments validate the performance of the developed preconditioning strategies.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block ω-circulant preconditioners for parabolic equations\",\"authors\":\"Po Yin Fung, Sean Y. Hon\",\"doi\":\"10.1016/j.camwa.2025.01.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel class of block <ce:italic>ω</ce:italic>-circulant preconditioners is developed for the all-at-once linear system that emerges from solving parabolic equations using first and second order discretization schemes for time. We establish a unifying preconditioning framework for <ce:italic>ω</ce:italic>-circulant preconditioners, extending and modifying the preconditioning approach recently proposed in (Zhang and Xu, 2024 <ce:cross-ref ref>[27]</ce:cross-ref>) and integrating some existing results in the literature. The proposed preconditioners leverage fast Fourier transforms for efficient diagonalization, facilitating parallel-in-time execution. Theoretically, these preconditioners ensure that eigenvalue clustering around ±1 is achieved, fostering fast convergence under the minimal residual method. Furthermore, when using the generalized minimal residual method, the effectiveness of these preconditioners is supported by the singular value clustering at unity. Numerical experiments validate the performance of the developed preconditioning strategies.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2025.01.019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,开发了一类新的块循环预调节器,用于使用一阶和二阶时间离散格式求解抛物方程产生的一次性线性系统。我们建立了ω-循环预调节器的统一预处理框架,扩展和修改了(Zhang and Xu, 2024[27])中最近提出的预处理方法,并整合了一些文献中的现有结果。所提出的预调节器利用快速傅里叶变换进行有效的对角化,促进并行执行。理论上,这些预条件保证了特征值在±1附近聚类,促进了最小残差法下的快速收敛。此外,当使用广义最小残差法时,这些预条件的有效性得到了单位奇异值聚类的支持。数值实验验证了所提出的预处理策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block ω-circulant preconditioners for parabolic equations
In this study, a novel class of block ω-circulant preconditioners is developed for the all-at-once linear system that emerges from solving parabolic equations using first and second order discretization schemes for time. We establish a unifying preconditioning framework for ω-circulant preconditioners, extending and modifying the preconditioning approach recently proposed in (Zhang and Xu, 2024 [27]) and integrating some existing results in the literature. The proposed preconditioners leverage fast Fourier transforms for efficient diagonalization, facilitating parallel-in-time execution. Theoretically, these preconditioners ensure that eigenvalue clustering around ±1 is achieved, fostering fast convergence under the minimal residual method. Furthermore, when using the generalized minimal residual method, the effectiveness of these preconditioners is supported by the singular value clustering at unity. Numerical experiments validate the performance of the developed preconditioning strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信