{"title":"橄榄果实的酚含量和概况:在非地中海生长环境中对比热制度的影响","authors":"Pierluigi Pierantozzi, Mariela Torres, Cibeles Contreras, Vitale Stanzione, Martín Tivani, Luciana Gentili, Valerio Mastio, Peter Searles, Magdalena Brizuela, Fabricio Fernández, Alejandro Toro, Carlos Puertas, Eduardo Trentacoste, Juan Kiessling, Marina Bufacchi, Fiammetta Alagna, Ornella Calderini, María Cristina Valeri, Luciana Baldoni, Damián Maestri","doi":"10.1016/j.eja.2025.127506","DOIUrl":null,"url":null,"abstract":"The content of phenolic compounds in olive fruits is a matter of interest, not only because of their contribution to olive oil quality but also to their beneficial effects on human health. While some studies mention genetic and agronomic factors affecting the olive fruit phenolic composition, there is still a lack of information on the role of the environmental growth temperature. This study addresses the impact of different thermal regimes on hydrophilic phenol contents from two olive cultivars (Arbequina and Coratina) growing at several environments in Argentina. The variability associated with the growing environment was significant for all compounds analyzed; lower total phenol contents were associated with warmer environments. Verbascoside and oleuropein aglycone were the compounds reflecting more clearly this general tendency; their contents were approximately 2–3 fold lower in the warmest than in the coldest environment. To assess relationships between thermal records and phenolic contents, various models were tested; those including the thermal time showed the best fit. In general, data from cv. Arbequina showed better fit than those from cv. Coratina. As a summary, a genotype-associated response is suggested whereby the tested cultivars would have the ability to accumulate higher amounts of total and specific phenols when grown in cooler environments.","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"45 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenolic content and profile of olive fruits: Impact of contrasting thermal regimes in non-Mediterranean growing environments\",\"authors\":\"Pierluigi Pierantozzi, Mariela Torres, Cibeles Contreras, Vitale Stanzione, Martín Tivani, Luciana Gentili, Valerio Mastio, Peter Searles, Magdalena Brizuela, Fabricio Fernández, Alejandro Toro, Carlos Puertas, Eduardo Trentacoste, Juan Kiessling, Marina Bufacchi, Fiammetta Alagna, Ornella Calderini, María Cristina Valeri, Luciana Baldoni, Damián Maestri\",\"doi\":\"10.1016/j.eja.2025.127506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The content of phenolic compounds in olive fruits is a matter of interest, not only because of their contribution to olive oil quality but also to their beneficial effects on human health. While some studies mention genetic and agronomic factors affecting the olive fruit phenolic composition, there is still a lack of information on the role of the environmental growth temperature. This study addresses the impact of different thermal regimes on hydrophilic phenol contents from two olive cultivars (Arbequina and Coratina) growing at several environments in Argentina. The variability associated with the growing environment was significant for all compounds analyzed; lower total phenol contents were associated with warmer environments. Verbascoside and oleuropein aglycone were the compounds reflecting more clearly this general tendency; their contents were approximately 2–3 fold lower in the warmest than in the coldest environment. To assess relationships between thermal records and phenolic contents, various models were tested; those including the thermal time showed the best fit. In general, data from cv. Arbequina showed better fit than those from cv. Coratina. As a summary, a genotype-associated response is suggested whereby the tested cultivars would have the ability to accumulate higher amounts of total and specific phenols when grown in cooler environments.\",\"PeriodicalId\":51045,\"journal\":{\"name\":\"European Journal of Agronomy\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eja.2025.127506\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.eja.2025.127506","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Phenolic content and profile of olive fruits: Impact of contrasting thermal regimes in non-Mediterranean growing environments
The content of phenolic compounds in olive fruits is a matter of interest, not only because of their contribution to olive oil quality but also to their beneficial effects on human health. While some studies mention genetic and agronomic factors affecting the olive fruit phenolic composition, there is still a lack of information on the role of the environmental growth temperature. This study addresses the impact of different thermal regimes on hydrophilic phenol contents from two olive cultivars (Arbequina and Coratina) growing at several environments in Argentina. The variability associated with the growing environment was significant for all compounds analyzed; lower total phenol contents were associated with warmer environments. Verbascoside and oleuropein aglycone were the compounds reflecting more clearly this general tendency; their contents were approximately 2–3 fold lower in the warmest than in the coldest environment. To assess relationships between thermal records and phenolic contents, various models were tested; those including the thermal time showed the best fit. In general, data from cv. Arbequina showed better fit than those from cv. Coratina. As a summary, a genotype-associated response is suggested whereby the tested cultivars would have the ability to accumulate higher amounts of total and specific phenols when grown in cooler environments.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.