{"title":"表面含氧官能团诱导的动态润湿液态金属薄层","authors":"Yue Zhang, Zhao Wang, Shutong Wang, Zhenwei Yu, Zhe Xu, Lei Jiang","doi":"10.1021/acsnano.4c16623","DOIUrl":null,"url":null,"abstract":"Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium–indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer. Polymer substrates exhibiting varying EGaIn wetting behaviors can be categorized by their sliding angles and adhesion force. X-ray photoelectron spectroscopy results demonstrate that the dynamic-wetting process occurs only on surfaces with sufficient oxygen-containing functional groups (content ≥18%) and confirm coordination interactions between the EGaIn oxide layer and surface functional groups. Furthermore, in EGaIn thermal management systems, the heat transfer rate in the wetting group is increased by up to 20% compared to that of the nonwetting group. This work will hasten the application of LMs in flexible circuits and thermal management.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups\",\"authors\":\"Yue Zhang, Zhao Wang, Shutong Wang, Zhenwei Yu, Zhe Xu, Lei Jiang\",\"doi\":\"10.1021/acsnano.4c16623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium–indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer. Polymer substrates exhibiting varying EGaIn wetting behaviors can be categorized by their sliding angles and adhesion force. X-ray photoelectron spectroscopy results demonstrate that the dynamic-wetting process occurs only on surfaces with sufficient oxygen-containing functional groups (content ≥18%) and confirm coordination interactions between the EGaIn oxide layer and surface functional groups. Furthermore, in EGaIn thermal management systems, the heat transfer rate in the wetting group is increased by up to 20% compared to that of the nonwetting group. This work will hasten the application of LMs in flexible circuits and thermal management.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16623\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16623","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups
Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium–indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer. Polymer substrates exhibiting varying EGaIn wetting behaviors can be categorized by their sliding angles and adhesion force. X-ray photoelectron spectroscopy results demonstrate that the dynamic-wetting process occurs only on surfaces with sufficient oxygen-containing functional groups (content ≥18%) and confirm coordination interactions between the EGaIn oxide layer and surface functional groups. Furthermore, in EGaIn thermal management systems, the heat transfer rate in the wetting group is increased by up to 20% compared to that of the nonwetting group. This work will hasten the application of LMs in flexible circuits and thermal management.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.