{"title":"新型绿色荧光蛋白发色团类似物的超分子组装及其在荧光防伪中的应用。","authors":"Yifei Ren and Chusen Huang","doi":"10.1039/D4TB02112F","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host–guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly–disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (<strong>CA</strong>) and cucurbit[7]uril (CB[7]). <strong>CA</strong> molecules are encapsulated by CB[7] to form a 1 : 2 host–guest assembly, thereby the fluorescence brightness of <strong>CA</strong> can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly–disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The <strong>CA</strong>-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 7","pages":" 2327-2334"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting†\",\"authors\":\"Yifei Ren and Chusen Huang\",\"doi\":\"10.1039/D4TB02112F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host–guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly–disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (<strong>CA</strong>) and cucurbit[7]uril (CB[7]). <strong>CA</strong> molecules are encapsulated by CB[7] to form a 1 : 2 host–guest assembly, thereby the fluorescence brightness of <strong>CA</strong> can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly–disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The <strong>CA</strong>-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 7\",\"pages\":\" 2327-2334\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02112f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02112f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting†
Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host–guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly–disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]). CA molecules are encapsulated by CB[7] to form a 1 : 2 host–guest assembly, thereby the fluorescence brightness of CA can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly–disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The CA-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices