{"title":"在基于3-D药物的纤维化模型中,纤维化细胞外基质优先诱导部分上皮-间质转化表型。","authors":"Kristin P Kim, Christopher A Lemmon","doi":"10.1016/j.mbs.2025.109375","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.</p>","PeriodicalId":94129,"journal":{"name":"Mathematical biosciences","volume":" ","pages":"109375"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis.\",\"authors\":\"Kristin P Kim, Christopher A Lemmon\",\"doi\":\"10.1016/j.mbs.2025.109375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.</p>\",\"PeriodicalId\":94129,\"journal\":{\"name\":\"Mathematical biosciences\",\"volume\":\" \",\"pages\":\"109375\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mbs.2025.109375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mbs.2025.109375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis.
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.