{"title":"正畸与正畸-正颌治疗骨骼类Ⅲ垂直正角错颌患者后上气道容积和舌骨位置的比较。","authors":"Hsu ChingCho, Haojie Liu, Chengzhao Lin, Zhenhao Liu, Ye Zhai, Shuyu Guo, Rongyao Xu","doi":"10.7518/hxkq.2025.2024184","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to compare the effects of two orthodontic treatment modalities for skeletal class Ⅲ malocclusion on specific changes in airway volume, morphology, palatal angle, mandibular rotation, and bone displacement. Results provide scientific evidence for the selection of orthodontic treatment plans and reduce the risk of developing obstructive sleep apnea hypopnea syndrome (OSAHS).</p><p><strong>Methods: </strong>Thirty-six patients diagnosed with skeletal class Ⅲ malocclusion at the Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University from September 2018 to December 2023 were divided into two groups: orthodontic-orthognathic treatment group (18 patients) and camouflage orthodontic treatment group (18 patients). Changes in airway volume, cross-sectional area, palatal angle, mandibular, and tongue positions were observed through pre- and post-operative cone beam computed tomography and 3D cephalometric measurements.</p><p><strong>Results: </strong>In the camouflage orthodontic treatment group, nasopharyngeal volume and oropharyngeal volume statistically increased after treatment (<i>P</i><0.05). In the orthodontic-orthognathic treatment group, changes in nasopharyngeal volume, nasopharyngeal airway, distance from posterior tongue to pharyngeal wall, palatal angle, mandibular rotation, and hyoid bone displacement were statistically significant after surgery (<i>P</i><0.05). In the comparison between the two groups after treatment, changes in the distance from posterior tongue to pharyngeal wall, palatal angle, and distance from hyoid bone to sella turcica point were statistically significant (<i>P</i><0.05).</p><p><strong>Conclusions: </strong>Patients in the orthodontic-orthognathic treatment group showed significantly greater changes in oropharyngeal cross-sectional area, palate angle, and tongue position compared with patients in the camouflage orthodontic treatment group. As individuals susceptible to OSAHS often exhibit mandibular retrusion and decreased minimum airway cross-sectional area, special attention should be paid to airway morphology changes when adopting orthodontic-orthognathic treatment to avoid adverse consequences.</p>","PeriodicalId":94028,"journal":{"name":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","volume":"43 1","pages":"53-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of upper airway volume and hyoid position after camouflage orthodontic or orthodontic-orthognathic treatment in patients with skeletal class Ⅲ malocclusion with normal-angle vertical pattern.\",\"authors\":\"Hsu ChingCho, Haojie Liu, Chengzhao Lin, Zhenhao Liu, Ye Zhai, Shuyu Guo, Rongyao Xu\",\"doi\":\"10.7518/hxkq.2025.2024184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to compare the effects of two orthodontic treatment modalities for skeletal class Ⅲ malocclusion on specific changes in airway volume, morphology, palatal angle, mandibular rotation, and bone displacement. Results provide scientific evidence for the selection of orthodontic treatment plans and reduce the risk of developing obstructive sleep apnea hypopnea syndrome (OSAHS).</p><p><strong>Methods: </strong>Thirty-six patients diagnosed with skeletal class Ⅲ malocclusion at the Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University from September 2018 to December 2023 were divided into two groups: orthodontic-orthognathic treatment group (18 patients) and camouflage orthodontic treatment group (18 patients). Changes in airway volume, cross-sectional area, palatal angle, mandibular, and tongue positions were observed through pre- and post-operative cone beam computed tomography and 3D cephalometric measurements.</p><p><strong>Results: </strong>In the camouflage orthodontic treatment group, nasopharyngeal volume and oropharyngeal volume statistically increased after treatment (<i>P</i><0.05). In the orthodontic-orthognathic treatment group, changes in nasopharyngeal volume, nasopharyngeal airway, distance from posterior tongue to pharyngeal wall, palatal angle, mandibular rotation, and hyoid bone displacement were statistically significant after surgery (<i>P</i><0.05). In the comparison between the two groups after treatment, changes in the distance from posterior tongue to pharyngeal wall, palatal angle, and distance from hyoid bone to sella turcica point were statistically significant (<i>P</i><0.05).</p><p><strong>Conclusions: </strong>Patients in the orthodontic-orthognathic treatment group showed significantly greater changes in oropharyngeal cross-sectional area, palate angle, and tongue position compared with patients in the camouflage orthodontic treatment group. As individuals susceptible to OSAHS often exhibit mandibular retrusion and decreased minimum airway cross-sectional area, special attention should be paid to airway morphology changes when adopting orthodontic-orthognathic treatment to avoid adverse consequences.</p>\",\"PeriodicalId\":94028,\"journal\":{\"name\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"volume\":\"43 1\",\"pages\":\"53-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7518/hxkq.2025.2024184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7518/hxkq.2025.2024184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of upper airway volume and hyoid position after camouflage orthodontic or orthodontic-orthognathic treatment in patients with skeletal class Ⅲ malocclusion with normal-angle vertical pattern.
Objectives: This study aims to compare the effects of two orthodontic treatment modalities for skeletal class Ⅲ malocclusion on specific changes in airway volume, morphology, palatal angle, mandibular rotation, and bone displacement. Results provide scientific evidence for the selection of orthodontic treatment plans and reduce the risk of developing obstructive sleep apnea hypopnea syndrome (OSAHS).
Methods: Thirty-six patients diagnosed with skeletal class Ⅲ malocclusion at the Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University from September 2018 to December 2023 were divided into two groups: orthodontic-orthognathic treatment group (18 patients) and camouflage orthodontic treatment group (18 patients). Changes in airway volume, cross-sectional area, palatal angle, mandibular, and tongue positions were observed through pre- and post-operative cone beam computed tomography and 3D cephalometric measurements.
Results: In the camouflage orthodontic treatment group, nasopharyngeal volume and oropharyngeal volume statistically increased after treatment (P<0.05). In the orthodontic-orthognathic treatment group, changes in nasopharyngeal volume, nasopharyngeal airway, distance from posterior tongue to pharyngeal wall, palatal angle, mandibular rotation, and hyoid bone displacement were statistically significant after surgery (P<0.05). In the comparison between the two groups after treatment, changes in the distance from posterior tongue to pharyngeal wall, palatal angle, and distance from hyoid bone to sella turcica point were statistically significant (P<0.05).
Conclusions: Patients in the orthodontic-orthognathic treatment group showed significantly greater changes in oropharyngeal cross-sectional area, palate angle, and tongue position compared with patients in the camouflage orthodontic treatment group. As individuals susceptible to OSAHS often exhibit mandibular retrusion and decreased minimum airway cross-sectional area, special attention should be paid to airway morphology changes when adopting orthodontic-orthognathic treatment to avoid adverse consequences.