{"title":"光生物调节联合人脐带间充质干细胞对小胶质细胞极化的调节。","authors":"Chunyan Ma, Hongyu Zhu, Yuanhao Cai, Na Li, Zhibo Han, Huancheng Wu, Hongli Chen","doi":"10.1002/jbio.202400468","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation. This study examines the combined effects of PBM and hUCMSCs in an in vitro microglial inflammation model and an LPS-induced mouse model. The results show that PBM-pretreated hUCMSCs promoted M2 polarization and improved cognitive function in mice by downregulating the Notch signaling pathway, suggesting a promising new approach for treating neurodegenerative diseases.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400468"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.\",\"authors\":\"Chunyan Ma, Hongyu Zhu, Yuanhao Cai, Na Li, Zhibo Han, Huancheng Wu, Hongli Chen\",\"doi\":\"10.1002/jbio.202400468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation. This study examines the combined effects of PBM and hUCMSCs in an in vitro microglial inflammation model and an LPS-induced mouse model. The results show that PBM-pretreated hUCMSCs promoted M2 polarization and improved cognitive function in mice by downregulating the Notch signaling pathway, suggesting a promising new approach for treating neurodegenerative diseases.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.
Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation. This study examines the combined effects of PBM and hUCMSCs in an in vitro microglial inflammation model and an LPS-induced mouse model. The results show that PBM-pretreated hUCMSCs promoted M2 polarization and improved cognitive function in mice by downregulating the Notch signaling pathway, suggesting a promising new approach for treating neurodegenerative diseases.