Linda B. Neubrand, Xavier Attendu, Ton G. van Leeuwen
{"title":"在光学相干层析成像中实现高精度衰减系数测量。","authors":"Linda B. Neubrand, Xavier Attendu, Ton G. van Leeuwen","doi":"10.1002/jbio.202400395","DOIUrl":null,"url":null,"abstract":"<p>In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm<sup>−1</sup> for intralipid samples. Furthermore, we introduce a systematic framework for attaining high precision in OCT attenuation measurements.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400395","citationCount":"0","resultStr":"{\"title\":\"Achieving High-Precision Attenuation Coefficient Measurement in Optical Coherence Tomography\",\"authors\":\"Linda B. Neubrand, Xavier Attendu, Ton G. van Leeuwen\",\"doi\":\"10.1002/jbio.202400395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm<sup>−1</sup> for intralipid samples. Furthermore, we introduce a systematic framework for attaining high precision in OCT attenuation measurements.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400395\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400395\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400395","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Achieving High-Precision Attenuation Coefficient Measurement in Optical Coherence Tomography
In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm−1 for intralipid samples. Furthermore, we introduce a systematic framework for attaining high precision in OCT attenuation measurements.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.