矢状面t2加权图像放射组学诊断髌骨软骨软化症。

Ying Shu
{"title":"矢状面t2加权图像放射组学诊断髌骨软骨软化症。","authors":"Ying Shu","doi":"10.1007/s00117-024-01413-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).</p><p><strong>Methods: </strong>The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each. A machine learning algorithm was used to train the classification model, which was then evaluated using standard performance metrics.</p><p><strong>Results: </strong>In the training set, the model achieved 24 true negatives (TN), 18 true positives (TP), 12 false negatives (FN), and six false positives (FP). Sensitivity, specificity, accuracy, and F1 score for the training set were 0.6, 0.8, 0.7, and 0.667, respectively. The model achieved six true negatives, eight true positives, two false negatives, and four false positives in the test set. Sensitivity, specificity, accuracy, and F1 score for the test set were 0.8, 0.6, 0.7, and 0.727, respectively.</p><p><strong>Conclusion: </strong>The radiomic analysis method based on patellar sagittal fat-suppressed T2WI images demonstrates good diagnostic capability for patellar bone marrow edema.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics-based diagnosis of patellar chondromalacia using sagittal T2-weighted images.\",\"authors\":\"Ying Shu\",\"doi\":\"10.1007/s00117-024-01413-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).</p><p><strong>Methods: </strong>The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each. A machine learning algorithm was used to train the classification model, which was then evaluated using standard performance metrics.</p><p><strong>Results: </strong>In the training set, the model achieved 24 true negatives (TN), 18 true positives (TP), 12 false negatives (FN), and six false positives (FP). Sensitivity, specificity, accuracy, and F1 score for the training set were 0.6, 0.8, 0.7, and 0.667, respectively. The model achieved six true negatives, eight true positives, two false negatives, and four false positives in the test set. Sensitivity, specificity, accuracy, and F1 score for the test set were 0.8, 0.6, 0.7, and 0.727, respectively.</p><p><strong>Conclusion: </strong>The radiomic analysis method based on patellar sagittal fat-suppressed T2WI images demonstrates good diagnostic capability for patellar bone marrow edema.</p>\",\"PeriodicalId\":74635,\"journal\":{\"name\":\"Radiologie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00117-024-01413-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-024-01413-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在探索和评估一种利用髌骨矢状t2加权图像(T2WI)放射学特征诊断髌骨软骨软化症的新方法。方法:选取40例髌骨软骨软化症患者和40例健康志愿者的髌骨矢状位T2WI图像作为实验资料。训练集包括30例软骨病患者和30名健康志愿者,而测试集包括各10例软骨病患者。使用机器学习算法来训练分类模型,然后使用标准性能指标对其进行评估。结果:在训练集中,模型实现了24个真阴性(TN), 18个真阳性(TP), 12个假阴性(FN), 6个假阳性(FP)。训练集的灵敏度、特异度、准确度和F1评分分别为0.6、0.8、0.7和0.667。该模型在测试集中实现了6个真阴性、8个真阳性、2个假阴性和4个假阳性。检测集的敏感性、特异性、准确性和F1评分分别为0.8、0.6、0.7和0.727。结论:基于髌骨矢状面脂肪抑制T2WI图像的放射组学分析方法对髌骨骨髓水肿具有较好的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics-based diagnosis of patellar chondromalacia using sagittal T2-weighted images.

Objective: This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).

Methods: The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each. A machine learning algorithm was used to train the classification model, which was then evaluated using standard performance metrics.

Results: In the training set, the model achieved 24 true negatives (TN), 18 true positives (TP), 12 false negatives (FN), and six false positives (FP). Sensitivity, specificity, accuracy, and F1 score for the training set were 0.6, 0.8, 0.7, and 0.667, respectively. The model achieved six true negatives, eight true positives, two false negatives, and four false positives in the test set. Sensitivity, specificity, accuracy, and F1 score for the test set were 0.8, 0.6, 0.7, and 0.727, respectively.

Conclusion: The radiomic analysis method based on patellar sagittal fat-suppressed T2WI images demonstrates good diagnostic capability for patellar bone marrow edema.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信