Alex De Nardi , Giovanni Marini , Ilaria Dorigatti , Roberto Rosà , Marco Tamba , Luca Gelmini , Alice Prosperi , Francesco Menegale , Piero Poletti , Mattia Calzolari , Andrea Pugliese
{"title":"量化西尼罗病毒在意大利北部鸟类宿主种群中的传播。","authors":"Alex De Nardi , Giovanni Marini , Ilaria Dorigatti , Roberto Rosà , Marco Tamba , Luca Gelmini , Alice Prosperi , Francesco Menegale , Piero Poletti , Mattia Calzolari , Andrea Pugliese","doi":"10.1016/j.idm.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season.</div><div>We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections.</div><div>Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 2","pages":"Pages 375-386"},"PeriodicalIF":8.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying West Nile virus circulation in the avian host population in Northern Italy\",\"authors\":\"Alex De Nardi , Giovanni Marini , Ilaria Dorigatti , Roberto Rosà , Marco Tamba , Luca Gelmini , Alice Prosperi , Francesco Menegale , Piero Poletti , Mattia Calzolari , Andrea Pugliese\",\"doi\":\"10.1016/j.idm.2024.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season.</div><div>We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections.</div><div>Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.</div></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":\"10 2\",\"pages\":\"Pages 375-386\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042724001350\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724001350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Quantifying West Nile virus circulation in the avian host population in Northern Italy
West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season.
We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections.
Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.