Pradeep Keshavanarayana, Raul Aparicio-Yuste, Fabian Spill, Maria Jose Gomez-Benito, Effie E Bastounis
{"title":"利用计算模型探索上皮和内皮细胞单层力学生物学。","authors":"Pradeep Keshavanarayana, Raul Aparicio-Yuste, Fabian Spill, Maria Jose Gomez-Benito, Effie E Bastounis","doi":"10.1016/j.tcb.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts. Concurrently, computational approaches and their importance in accelerating mechanobiology studies are discussed, emphasizing their limitations and suggesting future directions. The aim is to inspire further synergies between cell biologists and modelers, which are crucial for accelerating cell mechanobiology research.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology.\",\"authors\":\"Pradeep Keshavanarayana, Raul Aparicio-Yuste, Fabian Spill, Maria Jose Gomez-Benito, Effie E Bastounis\",\"doi\":\"10.1016/j.tcb.2024.12.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts. Concurrently, computational approaches and their importance in accelerating mechanobiology studies are discussed, emphasizing their limitations and suggesting future directions. The aim is to inspire further synergies between cell biologists and modelers, which are crucial for accelerating cell mechanobiology research.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2024.12.014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.12.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology.
Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts. Concurrently, computational approaches and their importance in accelerating mechanobiology studies are discussed, emphasizing their limitations and suggesting future directions. The aim is to inspire further synergies between cell biologists and modelers, which are crucial for accelerating cell mechanobiology research.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.