Ken-Ichi Yamakoshi, Peter Rolfe, Takehiro Yamakoshi
{"title":"基于光电容积振荡法的指尖动脉弹性测量:一种评估微血管血管运动功能的新方法。","authors":"Ken-Ichi Yamakoshi, Peter Rolfe, Takehiro Yamakoshi","doi":"10.1007/s13239-025-00772-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment. This paper describes a new approach to the assessment of vasomotor functions using the arteriolar elasticity measurement technique in the fingertip.</p><p><strong>Methods: </strong>A recently developed device, modified to detect a photoplethysmogram with green light (gPPG) in arteriolar regions, allowed the measurement of arteriolar blood pressure (BP<sub>ca.</sub>) and gPPG from a left index fingertip placed on an occlusive cuff of the device. Arteriolar stiffness and distensibility were analyzed as effective elasticity indices, as a function of arteriolar distending pressure derived by volume-oscillometry. Cold pressor tests to induce vasoconstriction were carried out whether appropriate elasticity changes could be obtained.</p><p><strong>Results: </strong>Experiments using 6 healthy subjects were successfully made to obtain arteriolar elastic properties before and while immersing a right hand in cold water. The index-values of stiffness and distensibility showed, respectively, a considerable increase and decrease, clearly demonstrating the appropriate elasticity changes with vasoconstrictive reactions.</p><p><strong>Conclusion: </strong>Although a further study using many subjects is needed, the results so far suggest that this method could easily provide important features to acquire quantitatively arteriolar elasticity together with BP<sub>ca.</sub> and to assess vasomotor functions in the microvasculature. This convenient method appears useful for clinical practices and health management and promising also for screening cardiovascular-related diseases. (242/250 words).</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arteriolar Elasticity Measurement in the Fingertip Based on Photoplethysmographic Volume-Oscillometry: A New Approach to the Assessment of Vasomotor Functions in the Microvasculature.\",\"authors\":\"Ken-Ichi Yamakoshi, Peter Rolfe, Takehiro Yamakoshi\",\"doi\":\"10.1007/s13239-025-00772-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment. This paper describes a new approach to the assessment of vasomotor functions using the arteriolar elasticity measurement technique in the fingertip.</p><p><strong>Methods: </strong>A recently developed device, modified to detect a photoplethysmogram with green light (gPPG) in arteriolar regions, allowed the measurement of arteriolar blood pressure (BP<sub>ca.</sub>) and gPPG from a left index fingertip placed on an occlusive cuff of the device. Arteriolar stiffness and distensibility were analyzed as effective elasticity indices, as a function of arteriolar distending pressure derived by volume-oscillometry. Cold pressor tests to induce vasoconstriction were carried out whether appropriate elasticity changes could be obtained.</p><p><strong>Results: </strong>Experiments using 6 healthy subjects were successfully made to obtain arteriolar elastic properties before and while immersing a right hand in cold water. The index-values of stiffness and distensibility showed, respectively, a considerable increase and decrease, clearly demonstrating the appropriate elasticity changes with vasoconstrictive reactions.</p><p><strong>Conclusion: </strong>Although a further study using many subjects is needed, the results so far suggest that this method could easily provide important features to acquire quantitatively arteriolar elasticity together with BP<sub>ca.</sub> and to assess vasomotor functions in the microvasculature. This convenient method appears useful for clinical practices and health management and promising also for screening cardiovascular-related diseases. (242/250 words).</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-025-00772-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00772-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Arteriolar Elasticity Measurement in the Fingertip Based on Photoplethysmographic Volume-Oscillometry: A New Approach to the Assessment of Vasomotor Functions in the Microvasculature.
Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment. This paper describes a new approach to the assessment of vasomotor functions using the arteriolar elasticity measurement technique in the fingertip.
Methods: A recently developed device, modified to detect a photoplethysmogram with green light (gPPG) in arteriolar regions, allowed the measurement of arteriolar blood pressure (BPca.) and gPPG from a left index fingertip placed on an occlusive cuff of the device. Arteriolar stiffness and distensibility were analyzed as effective elasticity indices, as a function of arteriolar distending pressure derived by volume-oscillometry. Cold pressor tests to induce vasoconstriction were carried out whether appropriate elasticity changes could be obtained.
Results: Experiments using 6 healthy subjects were successfully made to obtain arteriolar elastic properties before and while immersing a right hand in cold water. The index-values of stiffness and distensibility showed, respectively, a considerable increase and decrease, clearly demonstrating the appropriate elasticity changes with vasoconstrictive reactions.
Conclusion: Although a further study using many subjects is needed, the results so far suggest that this method could easily provide important features to acquire quantitatively arteriolar elasticity together with BPca. and to assess vasomotor functions in the microvasculature. This convenient method appears useful for clinical practices and health management and promising also for screening cardiovascular-related diseases. (242/250 words).
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.