{"title":"铁蛋白纳米颗粒:诊断和治疗中枢神经系统疾病的新策略。","authors":"Tao Guo, Muhammad Abid Hayat, Jiabo Hu","doi":"10.1088/1748-605X/adab5a","DOIUrl":null,"url":null,"abstract":"<p><p>Ferritin nanoparticles, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transport (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases. In particular, low immunogenicity of ferritin implies safety for its usage in clinical practices, and high biocompatibility add to the perspectives of its applications. Furthermore, contemporary strides in molecular biology have enabled some alteration in the configuration of the ferritin outer layers and surface characters so as to enhance the drug encapsulation capacity and conjugation affinity. Such modifications not only enhance the property of ferritin in crossing the BBB, but also enhance its efficacy when applied to CNS diseases. In summary, ferritin, as a drug delivery system, shows great potential for the treatment and diagnosis of CNS diseases.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferritin nanoparticles: new strategies for the diagnosis and treatment of central nervous system diseases.\",\"authors\":\"Tao Guo, Muhammad Abid Hayat, Jiabo Hu\",\"doi\":\"10.1088/1748-605X/adab5a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferritin nanoparticles, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transport (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases. In particular, low immunogenicity of ferritin implies safety for its usage in clinical practices, and high biocompatibility add to the perspectives of its applications. Furthermore, contemporary strides in molecular biology have enabled some alteration in the configuration of the ferritin outer layers and surface characters so as to enhance the drug encapsulation capacity and conjugation affinity. Such modifications not only enhance the property of ferritin in crossing the BBB, but also enhance its efficacy when applied to CNS diseases. In summary, ferritin, as a drug delivery system, shows great potential for the treatment and diagnosis of CNS diseases.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/adab5a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adab5a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ferritin nanoparticles: new strategies for the diagnosis and treatment of central nervous system diseases.
Ferritin nanoparticles, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transport (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases. In particular, low immunogenicity of ferritin implies safety for its usage in clinical practices, and high biocompatibility add to the perspectives of its applications. Furthermore, contemporary strides in molecular biology have enabled some alteration in the configuration of the ferritin outer layers and surface characters so as to enhance the drug encapsulation capacity and conjugation affinity. Such modifications not only enhance the property of ferritin in crossing the BBB, but also enhance its efficacy when applied to CNS diseases. In summary, ferritin, as a drug delivery system, shows great potential for the treatment and diagnosis of CNS diseases.