估计的因素得分不是真实的因素得分。

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mijke Rhemtulla, Victoria Savalei
{"title":"估计的因素得分不是真实的因素得分。","authors":"Mijke Rhemtulla, Victoria Savalei","doi":"10.1080/00273171.2024.2444943","DOIUrl":null,"url":null,"abstract":"<p><p>In this tutorial, we clarify the distinction between estimated factor scores, which are weighted composites of observed variables, and true factor scores, which are unobservable values of the underlying latent variable. Using an analogy with linear regression, we show how predicted values in linear regression share the properties of the most common type of factor score estimates, regression factor scores, computed from single-indicator and multiple indicator latent variable models. Using simulated data from 1- and 2-factor models, we also show how the amount of measurement error affects the reliability of regression factor scores, and compare the performance of regression factor scores with that of unweighted sum scores.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-22"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimated Factor Scores Are Not True Factor Scores.\",\"authors\":\"Mijke Rhemtulla, Victoria Savalei\",\"doi\":\"10.1080/00273171.2024.2444943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this tutorial, we clarify the distinction between estimated factor scores, which are weighted composites of observed variables, and true factor scores, which are unobservable values of the underlying latent variable. Using an analogy with linear regression, we show how predicted values in linear regression share the properties of the most common type of factor score estimates, regression factor scores, computed from single-indicator and multiple indicator latent variable models. Using simulated data from 1- and 2-factor models, we also show how the amount of measurement error affects the reliability of regression factor scores, and compare the performance of regression factor scores with that of unweighted sum scores.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2444943\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2444943","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本教程中,我们澄清了估计因子得分和真实因子得分之间的区别,前者是观察变量的加权组合,后者是潜在变量的不可观察值。通过与线性回归的类比,我们展示了线性回归中的预测值如何共享最常见的因子得分估计类型的属性,回归因子得分,从单指标和多指标潜在变量模型计算。使用来自1因素和2因素模型的模拟数据,我们还展示了测量误差的数量如何影响回归因子得分的可靠性,并比较了回归因子得分与未加权和得分的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimated Factor Scores Are Not True Factor Scores.

In this tutorial, we clarify the distinction between estimated factor scores, which are weighted composites of observed variables, and true factor scores, which are unobservable values of the underlying latent variable. Using an analogy with linear regression, we show how predicted values in linear regression share the properties of the most common type of factor score estimates, regression factor scores, computed from single-indicator and multiple indicator latent variable models. Using simulated data from 1- and 2-factor models, we also show how the amount of measurement error affects the reliability of regression factor scores, and compare the performance of regression factor scores with that of unweighted sum scores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信