{"title":"线粒体钙稳态与心房颤动:机制和治疗策略综述。","authors":"Yixuan Chang , Qi Zou","doi":"10.1016/j.cpcardiol.2025.102988","DOIUrl":null,"url":null,"abstract":"<div><div>Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance. However, Ca²⁺ homeostasis disruptions, particularly overload, result in excessive ROS production, mitochondrial permeability transition pore (mPTP) opening, and oxidative stress-induced damage. These changes lead to mitochondrial dysfunction, Ca²⁺ leakage, and cardiomyocyte apoptosis, driving AF progression and atrial remodeling. Therapeutically, targeting mitochondrial Ca²⁺ homeostasis shows promise in mitigating AF. Moderate Ca²⁺ regulation enhances energy metabolism, stabilizes mitochondrial membrane potential, and bolsters antioxidant defenses by upregulating enzymes like superoxide dismutase and glutathione peroxidase. This reduces ROS generation and facilitates clearance. Proper Ca²⁺ levels also prevent electron leakage and promote mitophagy, aiding in damaged mitochondria removal and reducing ROS accumulation. Future strategies include modulating Ryanodine receptor 2 (RyR2), mitochondrial calcium uniporter (MCU), and sodium-calcium exchanger (NCLX) to control Ca²⁺ overload and oxidative damage. Addressing mitochondrial Ca²⁺ dynamics offers a compelling approach to breaking the cycle of Ca²⁺ overload, oxidative stress, and AF progression. Further research is needed to clarify the mechanisms of mitochondrial Ca²⁺ regulation and its role in AF pathogenesis. This knowledge will guide the development of innovative treatments to improve outcomes and quality of life for AF patients.</div></div>","PeriodicalId":51006,"journal":{"name":"Current Problems in Cardiology","volume":"50 3","pages":"Article 102988"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial calcium homeostasis and atrial fibrillation: Mechanisms and therapeutic strategies review\",\"authors\":\"Yixuan Chang , Qi Zou\",\"doi\":\"10.1016/j.cpcardiol.2025.102988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance. However, Ca²⁺ homeostasis disruptions, particularly overload, result in excessive ROS production, mitochondrial permeability transition pore (mPTP) opening, and oxidative stress-induced damage. These changes lead to mitochondrial dysfunction, Ca²⁺ leakage, and cardiomyocyte apoptosis, driving AF progression and atrial remodeling. Therapeutically, targeting mitochondrial Ca²⁺ homeostasis shows promise in mitigating AF. Moderate Ca²⁺ regulation enhances energy metabolism, stabilizes mitochondrial membrane potential, and bolsters antioxidant defenses by upregulating enzymes like superoxide dismutase and glutathione peroxidase. This reduces ROS generation and facilitates clearance. Proper Ca²⁺ levels also prevent electron leakage and promote mitophagy, aiding in damaged mitochondria removal and reducing ROS accumulation. Future strategies include modulating Ryanodine receptor 2 (RyR2), mitochondrial calcium uniporter (MCU), and sodium-calcium exchanger (NCLX) to control Ca²⁺ overload and oxidative damage. Addressing mitochondrial Ca²⁺ dynamics offers a compelling approach to breaking the cycle of Ca²⁺ overload, oxidative stress, and AF progression. Further research is needed to clarify the mechanisms of mitochondrial Ca²⁺ regulation and its role in AF pathogenesis. This knowledge will guide the development of innovative treatments to improve outcomes and quality of life for AF patients.</div></div>\",\"PeriodicalId\":51006,\"journal\":{\"name\":\"Current Problems in Cardiology\",\"volume\":\"50 3\",\"pages\":\"Article 102988\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Problems in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146280625000118\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146280625000118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Mitochondrial calcium homeostasis and atrial fibrillation: Mechanisms and therapeutic strategies review
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance. However, Ca²⁺ homeostasis disruptions, particularly overload, result in excessive ROS production, mitochondrial permeability transition pore (mPTP) opening, and oxidative stress-induced damage. These changes lead to mitochondrial dysfunction, Ca²⁺ leakage, and cardiomyocyte apoptosis, driving AF progression and atrial remodeling. Therapeutically, targeting mitochondrial Ca²⁺ homeostasis shows promise in mitigating AF. Moderate Ca²⁺ regulation enhances energy metabolism, stabilizes mitochondrial membrane potential, and bolsters antioxidant defenses by upregulating enzymes like superoxide dismutase and glutathione peroxidase. This reduces ROS generation and facilitates clearance. Proper Ca²⁺ levels also prevent electron leakage and promote mitophagy, aiding in damaged mitochondria removal and reducing ROS accumulation. Future strategies include modulating Ryanodine receptor 2 (RyR2), mitochondrial calcium uniporter (MCU), and sodium-calcium exchanger (NCLX) to control Ca²⁺ overload and oxidative damage. Addressing mitochondrial Ca²⁺ dynamics offers a compelling approach to breaking the cycle of Ca²⁺ overload, oxidative stress, and AF progression. Further research is needed to clarify the mechanisms of mitochondrial Ca²⁺ regulation and its role in AF pathogenesis. This knowledge will guide the development of innovative treatments to improve outcomes and quality of life for AF patients.
期刊介绍:
Under the editorial leadership of noted cardiologist Dr. Hector O. Ventura, Current Problems in Cardiology provides focused, comprehensive coverage of important clinical topics in cardiology. Each monthly issues, addresses a selected clinical problem or condition, including pathophysiology, invasive and noninvasive diagnosis, drug therapy, surgical management, and rehabilitation; or explores the clinical applications of a diagnostic modality or a particular category of drugs. Critical commentary from the distinguished editorial board accompanies each monograph, providing readers with additional insights. An extensive bibliography in each issue saves hours of library research.