人类和动物模型中与PM2.5相关的认知障碍和发病率:系统综述

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES
Ritu Chauhan, Susmitha Dande, Darryl B Hood, Sanika S Chirwa, Michael A Langston, Stephen K Grady, Levente Dojcsak, Mohammad Tabatabai, Derek Wilus, R Burciaga Valdez, Mohammad Z Al-Hamdan, Wansoo Im, Monique McCallister, Donald J Alcendor, Charles P Mouton, Aramandla Ramesh
{"title":"人类和动物模型中与PM2.5相关的认知障碍和发病率:系统综述","authors":"Ritu Chauhan, Susmitha Dande, Darryl B Hood, Sanika S Chirwa, Michael A Langston, Stephen K Grady, Levente Dojcsak, Mohammad Tabatabai, Derek Wilus, R Burciaga Valdez, Mohammad Z Al-Hamdan, Wansoo Im, Monique McCallister, Donald J Alcendor, Charles P Mouton, Aramandla Ramesh","doi":"10.1080/10937404.2025.2450354","DOIUrl":null,"url":null,"abstract":"<p><p>Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM<sub>2.5</sub>) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM<sub>2.5</sub> -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM<sub>2.5</sub> and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM<sub>2.5</sub> exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM<sub>2.5</sub> also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM<sub>2.5</sub> exposure-induced neurological disorders.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"1-31"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particulate matter 2.5 (PM<sub>2.5</sub>) - associated cognitive impairment and morbidity in humans and animal models: a systematic review.\",\"authors\":\"Ritu Chauhan, Susmitha Dande, Darryl B Hood, Sanika S Chirwa, Michael A Langston, Stephen K Grady, Levente Dojcsak, Mohammad Tabatabai, Derek Wilus, R Burciaga Valdez, Mohammad Z Al-Hamdan, Wansoo Im, Monique McCallister, Donald J Alcendor, Charles P Mouton, Aramandla Ramesh\",\"doi\":\"10.1080/10937404.2025.2450354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM<sub>2.5</sub>) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM<sub>2.5</sub> -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM<sub>2.5</sub> and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM<sub>2.5</sub> exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM<sub>2.5</sub> also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM<sub>2.5</sub> exposure-induced neurological disorders.</p>\",\"PeriodicalId\":49971,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10937404.2025.2450354\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2025.2450354","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空气动力学直径小于2.5微米(PM2.5)的颗粒物是标准空气污染物之一,它(1)是由工业、汽车和野火排放等燃烧相关事件产生的空气中有毒物质的重要载体,(2)在短暂到长期的认知功能障碍以及其他一些神经系统疾病中起着重要作用。我们进行了一项系统综述,以解决研究设计的差异以及用于阐明PM2.5暴露的人类和动物模型中神经疾病的各种生化和分子标记。在从7个数据库筛选的340,068份科学出版物中,确定了312项针对PM2.5暴露与认知功能障碍之间关系的研究。从临床前(动物模型)和人体研究中发现了模棱两可的证据,表明PM2.5暴露会导致痴呆、帕金森病、多发性硬化症、中风、抑郁症、自闭症谱系障碍、注意缺陷多动障碍和神经发育。此外,来自人体研究的大量证据表明,PM2.5也与阿尔茨海默病、焦虑、神经病变和脑肿瘤有关。讨论了暴露体在表征神经行为异常方面的作用,以及利用神经暴露体倡议进行纵向研究的机会。我们的综述还提供了一些值得考虑的领域,其中之一是揭示微生物组的作用,以及气候变化在PM2.5暴露诱发的神经系统疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particulate matter 2.5 (PM2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review.

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信