Megan L James, Victoria H Stiles, Hans C von Lieres Und Wilkau, Alex L Jones, Richard W Willy, Kelly J Ashford, Isabel S Moore
{"title":"在不同步频条件下跑步机时盆腔加速的预测因素。","authors":"Megan L James, Victoria H Stiles, Hans C von Lieres Und Wilkau, Alex L Jones, Richard W Willy, Kelly J Ashford, Isabel S Moore","doi":"10.1080/14763141.2024.2446179","DOIUrl":null,"url":null,"abstract":"<p><p>Pelvic running injuries often require extensive rehabilitation and pelvic girdle pain is a barrier to running engagement in population sub-groups, such as perinatal women. However, exploration into how external pelvic loading may be altered during running is limited. This study assessed which biomechanical variables influence changes in external peak pelvic acceleration during treadmill running, across various stride frequency conditions. Twelve participants (7 female, 5 male) ran (9 km∙h<sup>-1</sup>) at their preferred stride frequency, and at ± 5% and ± 10% of their preferred stride frequency. Coordinate and acceleration data were collected using a motion capture system and inertial measurement units. Linear mixed models assessed peak tibial acceleration, displacement from hip to knee and ankle, contact time, and stride frequency as predictors of peak pelvic acceleration. Stride frequency and contact time interacted to predict peak vertical (<i>p</i> = .006) and resultant (<i>p</i> = .009) pelvic acceleration. When modelled, short contact times and low stride frequencies produced higher peak vertical (<i>p</i> = .007) and resultant (<i>p</i> = .016) pelvic accelerations than short contact times and average, or high stride frequencies. Increasing contact time, or increasing stride frequency at shorter contact times, may therefore be useful in reducing pelvic acceleration during treadmill running.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictors of pelvic acceleration during treadmill running across various stride frequency conditions.\",\"authors\":\"Megan L James, Victoria H Stiles, Hans C von Lieres Und Wilkau, Alex L Jones, Richard W Willy, Kelly J Ashford, Isabel S Moore\",\"doi\":\"10.1080/14763141.2024.2446179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pelvic running injuries often require extensive rehabilitation and pelvic girdle pain is a barrier to running engagement in population sub-groups, such as perinatal women. However, exploration into how external pelvic loading may be altered during running is limited. This study assessed which biomechanical variables influence changes in external peak pelvic acceleration during treadmill running, across various stride frequency conditions. Twelve participants (7 female, 5 male) ran (9 km∙h<sup>-1</sup>) at their preferred stride frequency, and at ± 5% and ± 10% of their preferred stride frequency. Coordinate and acceleration data were collected using a motion capture system and inertial measurement units. Linear mixed models assessed peak tibial acceleration, displacement from hip to knee and ankle, contact time, and stride frequency as predictors of peak pelvic acceleration. Stride frequency and contact time interacted to predict peak vertical (<i>p</i> = .006) and resultant (<i>p</i> = .009) pelvic acceleration. When modelled, short contact times and low stride frequencies produced higher peak vertical (<i>p</i> = .007) and resultant (<i>p</i> = .016) pelvic accelerations than short contact times and average, or high stride frequencies. Increasing contact time, or increasing stride frequency at shorter contact times, may therefore be useful in reducing pelvic acceleration during treadmill running.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2446179\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2446179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Predictors of pelvic acceleration during treadmill running across various stride frequency conditions.
Pelvic running injuries often require extensive rehabilitation and pelvic girdle pain is a barrier to running engagement in population sub-groups, such as perinatal women. However, exploration into how external pelvic loading may be altered during running is limited. This study assessed which biomechanical variables influence changes in external peak pelvic acceleration during treadmill running, across various stride frequency conditions. Twelve participants (7 female, 5 male) ran (9 km∙h-1) at their preferred stride frequency, and at ± 5% and ± 10% of their preferred stride frequency. Coordinate and acceleration data were collected using a motion capture system and inertial measurement units. Linear mixed models assessed peak tibial acceleration, displacement from hip to knee and ankle, contact time, and stride frequency as predictors of peak pelvic acceleration. Stride frequency and contact time interacted to predict peak vertical (p = .006) and resultant (p = .009) pelvic acceleration. When modelled, short contact times and low stride frequencies produced higher peak vertical (p = .007) and resultant (p = .016) pelvic accelerations than short contact times and average, or high stride frequencies. Increasing contact time, or increasing stride frequency at shorter contact times, may therefore be useful in reducing pelvic acceleration during treadmill running.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.