CRISPR/Cas9系统治疗眼部疾病的最新进展。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
D A Ayush Gowda, Girish Birappa, Sripriya Rajkumar, C Bindu Ajaykumar, Bhavana Srikanth, Sammy L Kim, Vijai Singh, Aparna Jayachandran, Junwon Lee, Suresh Ramakrishna
{"title":"CRISPR/Cas9系统治疗眼部疾病的最新进展。","authors":"D A Ayush Gowda, Girish Birappa, Sripriya Rajkumar, C Bindu Ajaykumar, Bhavana Srikanth, Sammy L Kim, Vijai Singh, Aparna Jayachandran, Junwon Lee, Suresh Ramakrishna","doi":"10.1016/bs.pmbts.2024.07.018","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"21-46"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in CRISPR/Cas9 system for eye disorders.\",\"authors\":\"D A Ayush Gowda, Girish Birappa, Sripriya Rajkumar, C Bindu Ajaykumar, Bhavana Srikanth, Sammy L Kim, Vijai Singh, Aparna Jayachandran, Junwon Lee, Suresh Ramakrishna\",\"doi\":\"10.1016/bs.pmbts.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":\"210 \",\"pages\":\"21-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2024.07.018\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.07.018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

眼部疾病包括多种遗传变异和环境因素引起的广泛的表型和临床症状。眼睛独特的解剖学和生理学有助于验证尖端基因编辑治疗。基因组编辑的发展使研究人员能够治疗包括眼部疾病在内的各种疾病。聚集规律间隔短回文重复序列(CRISPR/Cas9)系统在眼科领域的治疗应用具有相当大的前景,包括修复异常基因和治疗与基因组或表观基因组相关的视网膜疾病。CRISPR/Cas9系统在眼部疾病和视觉科学研究中的应用已经产生了一些创新,包括在患者来源的细胞中纠正有害突变,以及在几种眼睛发育和疾病的哺乳动物模型中进行基因修饰。在这项研究中,我们讨论了使用CRISPR/Cas9系统在哺乳动物细胞系和体内系统中产生几种眼病模型。我们还概述了目前CRISPR/Cas9技术在眼部病变治疗中的应用,以及未来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent progress in CRISPR/Cas9 system for eye disorders.

Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信