模拟宿主-病原体相互作用:作为研究铜绿假单胞菌对宿主施加的锌饥饿反应的平台的mellonella。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Emma Michetti, Tulasi Abinya Mandava, Valerio Secli, Francesca Pacello, Andrea Battistoni, Serena Ammendola
{"title":"模拟宿主-病原体相互作用:作为研究铜绿假单胞菌对宿主施加的锌饥饿反应的平台的mellonella。","authors":"Emma Michetti, Tulasi Abinya Mandava, Valerio Secli, Francesca Pacello, Andrea Battistoni, Serena Ammendola","doi":"10.1099/mic.0.001524","DOIUrl":null,"url":null,"abstract":"<p><p>Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. <i>Pseudomonas aeruginosa</i> counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of <i>P. aeruginosa</i>-related diseases in humans. Among available animal models, <i>Galleria mellonella</i> has recently emerged as a promising alternative to mammalian hosts. This study aims to evaluate whether <i>G. mellonella</i> can recapitulate the zinc-related nutritional immunity responses observed in mammalian infections. Our results show that, upon <i>P. aeruginosa</i> infection, the larvae upregulate several zinc transporters, suggesting an active redistribution of the metal in response to the pathogen. Additionally, <i>P. aeruginosa</i> colonizing the larvae induces Zn uptake regulator-controlled genes, consistent with bacterial adaptation to zinc starvation. Disruption of bacterial zinc uptake capability significantly reduces <i>P. aeruginosa</i> virulence, underscoring the importance of zinc acquisition in pathogenesis also within this model host. As a proof of concept, we also demonstrate that this <i>in vivo</i> model can serve as a viable preliminary screening tool to unveil novel players involved in <i>P. aeruginosa</i> response to zinc starvation, offering valuable insights into the host-pathogen battle for micronutrients.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling host-pathogen interactions: <i>Galleria mellonella</i> as a platform to study <i>Pseudomonas aeruginosa</i> response to host-imposed zinc starvation.\",\"authors\":\"Emma Michetti, Tulasi Abinya Mandava, Valerio Secli, Francesca Pacello, Andrea Battistoni, Serena Ammendola\",\"doi\":\"10.1099/mic.0.001524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. <i>Pseudomonas aeruginosa</i> counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of <i>P. aeruginosa</i>-related diseases in humans. Among available animal models, <i>Galleria mellonella</i> has recently emerged as a promising alternative to mammalian hosts. This study aims to evaluate whether <i>G. mellonella</i> can recapitulate the zinc-related nutritional immunity responses observed in mammalian infections. Our results show that, upon <i>P. aeruginosa</i> infection, the larvae upregulate several zinc transporters, suggesting an active redistribution of the metal in response to the pathogen. Additionally, <i>P. aeruginosa</i> colonizing the larvae induces Zn uptake regulator-controlled genes, consistent with bacterial adaptation to zinc starvation. Disruption of bacterial zinc uptake capability significantly reduces <i>P. aeruginosa</i> virulence, underscoring the importance of zinc acquisition in pathogenesis also within this model host. As a proof of concept, we also demonstrate that this <i>in vivo</i> model can serve as a viable preliminary screening tool to unveil novel players involved in <i>P. aeruginosa</i> response to zinc starvation, offering valuable insights into the host-pathogen battle for micronutrients.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001524\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001524","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

营养免疫是脊椎动物先天免疫反应的关键组成部分,涉及调节锌的可用性以限制病原体的生长。铜绿假单胞菌通过代谢适应抵消宿主施加的锌饥饿,包括基因表达重编程和激活有效的金属摄取系统。为了揭示锌缺乏如何促进细菌适应宿主环境的复杂性,使用模拟人类铜绿假单胞菌相关疾病基本特征的模型系统至关重要。在现有的动物模型中,mellonella Galleria最近作为一种有希望的替代哺乳动物宿主出现。本研究的目的是评估大黄杆菌是否可以重现哺乳动物感染中观察到的锌相关的营养免疫反应。我们的研究结果表明,在铜绿假单胞菌感染后,幼虫上调了几种锌转运蛋白,这表明金属在对病原体的反应中进行了主动重新分配。此外,定植在幼虫体内的铜绿假单胞菌诱导了锌摄取调节因子控制基因,这与细菌对锌饥饿的适应一致。细菌锌摄取能力的破坏显著降低了铜绿假单胞菌的毒力,强调了锌获取在该模型宿主发病机制中的重要性。作为概念的证明,我们还证明了这种体内模型可以作为一种可行的初步筛选工具,揭示参与铜绿假单胞菌对锌饥饿反应的新参与者,为宿主-病原体争夺微量营养素提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling host-pathogen interactions: Galleria mellonella as a platform to study Pseudomonas aeruginosa response to host-imposed zinc starvation.

Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. Pseudomonas aeruginosa counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of P. aeruginosa-related diseases in humans. Among available animal models, Galleria mellonella has recently emerged as a promising alternative to mammalian hosts. This study aims to evaluate whether G. mellonella can recapitulate the zinc-related nutritional immunity responses observed in mammalian infections. Our results show that, upon P. aeruginosa infection, the larvae upregulate several zinc transporters, suggesting an active redistribution of the metal in response to the pathogen. Additionally, P. aeruginosa colonizing the larvae induces Zn uptake regulator-controlled genes, consistent with bacterial adaptation to zinc starvation. Disruption of bacterial zinc uptake capability significantly reduces P. aeruginosa virulence, underscoring the importance of zinc acquisition in pathogenesis also within this model host. As a proof of concept, we also demonstrate that this in vivo model can serve as a viable preliminary screening tool to unveil novel players involved in P. aeruginosa response to zinc starvation, offering valuable insights into the host-pathogen battle for micronutrients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信