高let辐射的逆剂量延长效应:证据和意义。

IF 6.4 2区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Nobuyuki Hamada , Yusuke Matsuya , Lydia B. Zablotska , Mark P. Little
{"title":"高let辐射的逆剂量延长效应:证据和意义。","authors":"Nobuyuki Hamada ,&nbsp;Yusuke Matsuya ,&nbsp;Lydia B. Zablotska ,&nbsp;Mark P. Little","doi":"10.1016/j.mrrev.2025.108530","DOIUrl":null,"url":null,"abstract":"<div><div>Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET). For acute irradiation, high-LET radiation generally produces greater biological effects than low-LET radiation, but little knowledge exists as to how dose protraction modifies effects. In this regard, inverse dose protraction effects (IDPEs) are phenomena in which dose protraction enhances effects, contrasting with sparing dose protraction effects in which dose protraction reduces effects. Here, we review the current knowledge on IDPEs of high-LET radiation. To the best of our knowledge, since 1967, 80 biology or epidemiology papers have reported IDPEs following external or internal high-LET irradiation with neutrons, deuterons, α-particles, light ions, or heavy ions. IDPEs of high-LET radiation have been described for biochemical changes in cell-free macromolecules, neoplastic transformation, cell death, DNA damage responses and gene expression changes in mammalian cell cultures of human or rodent origin, gene mutations, cytogenetic changes, cancer, non-cancer effects (e.g., testicular effects, cataracts, cardiovascular diseases) and life shortening in non-human mammals (rodents and dogs), and induction of lung cancer and bone tumors in humans. For external irradiation of mammalian cells in vitro and mammals in vivo, IDPEs of low- and high-LET radiation have been reported for radiation doses spanning in excess of three or four orders of magnitude in slightly different ranges, and for radiation dose rates both spanning over six orders of magnitude in different ranges. IDPEs of high-LET radiation in humans have been reported following internal exposure, but not external exposure. Manifestations and mechanisms of IDPEs of high-LET radiation are far less understood than those of low-LET radiation, warranting further studies that will be pivotal to assess the implications for radiation protection.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"795 ","pages":"Article 108530"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse dose protraction effects of high-LET radiation: Evidence and significance\",\"authors\":\"Nobuyuki Hamada ,&nbsp;Yusuke Matsuya ,&nbsp;Lydia B. Zablotska ,&nbsp;Mark P. Little\",\"doi\":\"10.1016/j.mrrev.2025.108530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET). For acute irradiation, high-LET radiation generally produces greater biological effects than low-LET radiation, but little knowledge exists as to how dose protraction modifies effects. In this regard, inverse dose protraction effects (IDPEs) are phenomena in which dose protraction enhances effects, contrasting with sparing dose protraction effects in which dose protraction reduces effects. Here, we review the current knowledge on IDPEs of high-LET radiation. To the best of our knowledge, since 1967, 80 biology or epidemiology papers have reported IDPEs following external or internal high-LET irradiation with neutrons, deuterons, α-particles, light ions, or heavy ions. IDPEs of high-LET radiation have been described for biochemical changes in cell-free macromolecules, neoplastic transformation, cell death, DNA damage responses and gene expression changes in mammalian cell cultures of human or rodent origin, gene mutations, cytogenetic changes, cancer, non-cancer effects (e.g., testicular effects, cataracts, cardiovascular diseases) and life shortening in non-human mammals (rodents and dogs), and induction of lung cancer and bone tumors in humans. For external irradiation of mammalian cells in vitro and mammals in vivo, IDPEs of low- and high-LET radiation have been reported for radiation doses spanning in excess of three or four orders of magnitude in slightly different ranges, and for radiation dose rates both spanning over six orders of magnitude in different ranges. IDPEs of high-LET radiation in humans have been reported following internal exposure, but not external exposure. Manifestations and mechanisms of IDPEs of high-LET radiation are far less understood than those of low-LET radiation, warranting further studies that will be pivotal to assess the implications for radiation protection.</div></div>\",\"PeriodicalId\":49789,\"journal\":{\"name\":\"Mutation Research-Reviews in Mutation Research\",\"volume\":\"795 \",\"pages\":\"Article 108530\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Reviews in Mutation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383574225000018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574225000018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电离辐射的生物效应随辐射质量而变化,辐射质量通常表示为每单位长度沉积的能量量,即线性能量传递(LET)。对于急性照射,高let辐射通常比低let辐射产生更大的生物效应,但关于剂量延长如何改变效应的知识很少。在这方面,反向剂量延长效应(IDPEs)是指剂量延长增强效应的现象,而相对于剂量延长降低效应的保留剂量延长效应。在这里,我们回顾了目前关于高let辐射的idpe的知识。据我们所知,自1967年以来,80篇生物学或流行病学论文报道了用中子、氘核、α-粒子、轻离子或重离子进行外部或内部高let照射后的idpe。高let辐射的idpe已被描述为无细胞大分子的生化变化、肿瘤转化、细胞死亡、DNA损伤反应和人类或啮齿动物来源的哺乳动物细胞培养物中的基因表达变化、基因突变、细胞遗传学变化、非人类哺乳动物(啮齿动物和狗)的癌症、非癌症效应(例如睾丸效应、白内障、心血管疾病)和寿命缩短,以及在人类中诱导肺癌和骨肿瘤。对于体外哺乳动物细胞和体内哺乳动物细胞的外照射,已经报道了低let和高let辐射的idpe,辐射剂量在略微不同的范围内超过3或4个数量级,辐射剂量率在不同范围内超过6个数量级。高let辐射对人体的idpe有内部照射后的报告,但没有外部照射后的报告。与低let辐射相比,高let辐射的idpe表现和机制尚不清楚,因此需要进一步研究,这对评估辐射防护的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse dose protraction effects of high-LET radiation: Evidence and significance
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET). For acute irradiation, high-LET radiation generally produces greater biological effects than low-LET radiation, but little knowledge exists as to how dose protraction modifies effects. In this regard, inverse dose protraction effects (IDPEs) are phenomena in which dose protraction enhances effects, contrasting with sparing dose protraction effects in which dose protraction reduces effects. Here, we review the current knowledge on IDPEs of high-LET radiation. To the best of our knowledge, since 1967, 80 biology or epidemiology papers have reported IDPEs following external or internal high-LET irradiation with neutrons, deuterons, α-particles, light ions, or heavy ions. IDPEs of high-LET radiation have been described for biochemical changes in cell-free macromolecules, neoplastic transformation, cell death, DNA damage responses and gene expression changes in mammalian cell cultures of human or rodent origin, gene mutations, cytogenetic changes, cancer, non-cancer effects (e.g., testicular effects, cataracts, cardiovascular diseases) and life shortening in non-human mammals (rodents and dogs), and induction of lung cancer and bone tumors in humans. For external irradiation of mammalian cells in vitro and mammals in vivo, IDPEs of low- and high-LET radiation have been reported for radiation doses spanning in excess of three or four orders of magnitude in slightly different ranges, and for radiation dose rates both spanning over six orders of magnitude in different ranges. IDPEs of high-LET radiation in humans have been reported following internal exposure, but not external exposure. Manifestations and mechanisms of IDPEs of high-LET radiation are far less understood than those of low-LET radiation, warranting further studies that will be pivotal to assess the implications for radiation protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
1.90%
发文量
22
审稿时长
15.7 weeks
期刊介绍: The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信