{"title":"自发的皮层慢电位和脑振荡独立影响有意识的视觉知觉。","authors":"Lua Koenig, Biyu J He","doi":"10.1371/journal.pbio.3002964","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002964"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737857/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception.\",\"authors\":\"Lua Koenig, Biyu J He\",\"doi\":\"10.1371/journal.pbio.3002964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 1\",\"pages\":\"e3002964\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002964\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002964","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.