Sze Wei Eng, Vilassini Muniandy, Lohshinni Punniamoorthy, Hui Xian Tew, Mohd Nor Norazmi, Manickam Ravichandran, Su Yin Lee
{"title":"作为DNA疫苗递送载体的减毒活细菌载体:综述","authors":"Sze Wei Eng, Vilassini Muniandy, Lohshinni Punniamoorthy, Hui Xian Tew, Mohd Nor Norazmi, Manickam Ravichandran, Su Yin Lee","doi":"10.21315/mjms2024.31.6.2","DOIUrl":null,"url":null,"abstract":"<p><p>DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.</p>","PeriodicalId":47388,"journal":{"name":"Malaysian Journal of Medical Sciences","volume":"31 6","pages":"6-20"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review.\",\"authors\":\"Sze Wei Eng, Vilassini Muniandy, Lohshinni Punniamoorthy, Hui Xian Tew, Mohd Nor Norazmi, Manickam Ravichandran, Su Yin Lee\",\"doi\":\"10.21315/mjms2024.31.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.</p>\",\"PeriodicalId\":47388,\"journal\":{\"name\":\"Malaysian Journal of Medical Sciences\",\"volume\":\"31 6\",\"pages\":\"6-20\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21315/mjms2024.31.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/mjms2024.31.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review.
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
期刊介绍:
The Malaysian Journal of Medical Sciences (MJMS) is a peer-reviewed, open-access, fully online journal that is published at least six times a year. The journal’s scope encompasses all aspects of medical sciences including biomedical, allied health, clinical and social sciences. We accept high quality papers from basic to translational research especially from low & middle income countries, as classified by the United Nations & World Bank (https://datahelpdesk.worldbank.org/knowledgebase/ articles/906519), with the aim that published research will benefit back the bottom billion population from these countries. Manuscripts submitted from developed or high income countries to MJMS must contain data and information that will benefit the socio-health and bio-medical sciences of these low and middle income countries. The MJMS editorial board consists of internationally regarded clinicians and scientists from low and middle income countries.