Akanksha Pandey, Sachin Kumar, Navneet Bithel, Sandeep Kumar, M Amin Mir
{"title":"新型非致病性铜绿假单胞菌ED24对孔雀石绿染料的可持续生物降解。","authors":"Akanksha Pandey, Sachin Kumar, Navneet Bithel, Sandeep Kumar, M Amin Mir","doi":"10.1007/s11274-025-04251-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries. The biochemical and molecular characterization of the bacterial strain showed the resemblance of most potent strain ED24 as Pseudomonas aeruginosa, which showed effective bioremediation potential against the MG dye. During response surface analysis (RSM), best MG degradation conditions have been observed at pH 7.0, 37 °C, 48 h, and 200 mg/L dye concentration, with highest degradation efficiency of 96.56 ± 0.8622 percent. Subsequently, supplementing various carbon and nitrogen sources increases MG decolorization by 1 to 2%, with beef extract (97.23%), sodium nitrate (97.46%), and maltose (98.67%). FT-IR results revealed the disappearance of distinct peaks, namely, 3328.275 cm<sup>-1</sup>, 2102.842 cm<sup>-1</sup>, 1101.140 cm<sup>-1</sup>, and 559.04 cm<sup>-1</sup> from MG, and the formation of major intermediate compounds like leucomalachite green, benzoic acid, diacetamide, benzeneacetic acid, hexyl ester, ethyl 4-acetoxy butanoate, butanoic acid, and 2-methyl in GC-MS analysis of degraded dye sample confirms the biodegradation by bacterial strain ED24. The phytotoxicity studies on mung bean seeds confirmed MG dye toxicity reduction up to 67.53%, 54.16%, and 67.53% in biomass accumulation, root, and shoot lengths, respectively. Also, the microbial toxicity of MG was completely reduced on soil microflora Bacillus flexus, Stenotrophomonas maltophilia, Escherichia coli, Staphylococcus aureus, and Alternaria spp. The dual mitigation, both in microbial and plant systems, indicates the strong remediation potential of P. aeruginosa ED24 to break down MG dye ecologically sustainably.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"44"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable biodegradation of malachite green dye by novel non-pathogenic Pseudomonas aeruginosa ED24.\",\"authors\":\"Akanksha Pandey, Sachin Kumar, Navneet Bithel, Sandeep Kumar, M Amin Mir\",\"doi\":\"10.1007/s11274-025-04251-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries. The biochemical and molecular characterization of the bacterial strain showed the resemblance of most potent strain ED24 as Pseudomonas aeruginosa, which showed effective bioremediation potential against the MG dye. During response surface analysis (RSM), best MG degradation conditions have been observed at pH 7.0, 37 °C, 48 h, and 200 mg/L dye concentration, with highest degradation efficiency of 96.56 ± 0.8622 percent. Subsequently, supplementing various carbon and nitrogen sources increases MG decolorization by 1 to 2%, with beef extract (97.23%), sodium nitrate (97.46%), and maltose (98.67%). FT-IR results revealed the disappearance of distinct peaks, namely, 3328.275 cm<sup>-1</sup>, 2102.842 cm<sup>-1</sup>, 1101.140 cm<sup>-1</sup>, and 559.04 cm<sup>-1</sup> from MG, and the formation of major intermediate compounds like leucomalachite green, benzoic acid, diacetamide, benzeneacetic acid, hexyl ester, ethyl 4-acetoxy butanoate, butanoic acid, and 2-methyl in GC-MS analysis of degraded dye sample confirms the biodegradation by bacterial strain ED24. The phytotoxicity studies on mung bean seeds confirmed MG dye toxicity reduction up to 67.53%, 54.16%, and 67.53% in biomass accumulation, root, and shoot lengths, respectively. Also, the microbial toxicity of MG was completely reduced on soil microflora Bacillus flexus, Stenotrophomonas maltophilia, Escherichia coli, Staphylococcus aureus, and Alternaria spp. The dual mitigation, both in microbial and plant systems, indicates the strong remediation potential of P. aeruginosa ED24 to break down MG dye ecologically sustainably.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 2\",\"pages\":\"44\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-025-04251-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04251-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Sustainable biodegradation of malachite green dye by novel non-pathogenic Pseudomonas aeruginosa ED24.
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries. The biochemical and molecular characterization of the bacterial strain showed the resemblance of most potent strain ED24 as Pseudomonas aeruginosa, which showed effective bioremediation potential against the MG dye. During response surface analysis (RSM), best MG degradation conditions have been observed at pH 7.0, 37 °C, 48 h, and 200 mg/L dye concentration, with highest degradation efficiency of 96.56 ± 0.8622 percent. Subsequently, supplementing various carbon and nitrogen sources increases MG decolorization by 1 to 2%, with beef extract (97.23%), sodium nitrate (97.46%), and maltose (98.67%). FT-IR results revealed the disappearance of distinct peaks, namely, 3328.275 cm-1, 2102.842 cm-1, 1101.140 cm-1, and 559.04 cm-1 from MG, and the formation of major intermediate compounds like leucomalachite green, benzoic acid, diacetamide, benzeneacetic acid, hexyl ester, ethyl 4-acetoxy butanoate, butanoic acid, and 2-methyl in GC-MS analysis of degraded dye sample confirms the biodegradation by bacterial strain ED24. The phytotoxicity studies on mung bean seeds confirmed MG dye toxicity reduction up to 67.53%, 54.16%, and 67.53% in biomass accumulation, root, and shoot lengths, respectively. Also, the microbial toxicity of MG was completely reduced on soil microflora Bacillus flexus, Stenotrophomonas maltophilia, Escherichia coli, Staphylococcus aureus, and Alternaria spp. The dual mitigation, both in microbial and plant systems, indicates the strong remediation potential of P. aeruginosa ED24 to break down MG dye ecologically sustainably.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.