{"title":"基因组编辑的视网膜类器官移植恢复了与严重退化的宿主视网膜协调的一些基本生理功能。","authors":"Mikiya Watanabe, Takayuki Yamada, Chieko Koike, Masayo Takahashi, Masao Tachibana, Michiko Mandai","doi":"10.1016/j.stemcr.2024.102393","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1<sup>-/-</sup> ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays. Notably, retinal ganglion cells (RGCs) in TP-rd1 retinas acquired light sensitivity comparable to that of WT retinas. Furthermore, RGCs in TP-rd1 retinas showed light adaptation to a photopic background and responded to flickering stimuli. These results demonstrate that transplantation of gRO sheets may restore some fundamental physiological functions, possibly coordinating with the remaining functions in retinas with end-stage degeneration.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102393"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas.\",\"authors\":\"Mikiya Watanabe, Takayuki Yamada, Chieko Koike, Masayo Takahashi, Masao Tachibana, Michiko Mandai\",\"doi\":\"10.1016/j.stemcr.2024.102393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1<sup>-/-</sup> ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays. Notably, retinal ganglion cells (RGCs) in TP-rd1 retinas acquired light sensitivity comparable to that of WT retinas. Furthermore, RGCs in TP-rd1 retinas showed light adaptation to a photopic background and responded to flickering stimuli. These results demonstrate that transplantation of gRO sheets may restore some fundamental physiological functions, possibly coordinating with the remaining functions in retinas with end-stage degeneration.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"102393\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.102393\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.102393","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas.
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1-/- ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays. Notably, retinal ganglion cells (RGCs) in TP-rd1 retinas acquired light sensitivity comparable to that of WT retinas. Furthermore, RGCs in TP-rd1 retinas showed light adaptation to a photopic background and responded to flickering stimuli. These results demonstrate that transplantation of gRO sheets may restore some fundamental physiological functions, possibly coordinating with the remaining functions in retinas with end-stage degeneration.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.