复发缓解型多发性硬化症中肠道微生物组和血液代谢组特征的景观。

IF 8 2区 生物学 Q1 BIOLOGY
Science China Life Sciences Pub Date : 2025-04-01 Epub Date: 2025-01-13 DOI:10.1007/s11427-024-2653-2
Jinzhou Feng, Shi Tang, Xiaolin Yang, Mengjie Zhang, Zhizhong Li, Shaoru Zhang, Yongliang Han, Yongmei Li, Philippe P Monnier, Gang Yu, Peng Zheng, Cunjin Zhang, Ke Xu, Xinyue Qin
{"title":"复发缓解型多发性硬化症中肠道微生物组和血液代谢组特征的景观。","authors":"Jinzhou Feng, Shi Tang, Xiaolin Yang, Mengjie Zhang, Zhizhong Li, Shaoru Zhang, Yongliang Han, Yongmei Li, Philippe P Monnier, Gang Yu, Peng Zheng, Cunjin Zhang, Ke Xu, Xinyue Qin","doi":"10.1007/s11427-024-2653-2","DOIUrl":null,"url":null,"abstract":"<p><p>Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism. Notably, α-phylogenetic diversity was significantly decreased in RRMS patients during the chronic phase (CMS) compared with those in the acute phase (AMS). A distinctive combination of two elevated genera (Slackia, Lactobacillus) and five glycerophospholipid metabolism-associated metabolites (four increased: GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z)); one decreased: PS(15:0/22:1(13Z))) in RRMS patients when comparing to HCs. Moreover, a biomarker panel consisting of four microbial genera (three decreased: Lysinibacillus, Parabacteroides, UBA1819; one increased: Lachnoanaerobaculum) and two glycerophospholipid metabolism-associated metabolites (one increased: PE(P-16:0/22:6); one decreased: CL(i-12:0/i-16:0/i-17:0/i-12:0)) effectively discriminated CMS patients from AMS patients, which indicate correlation with higher disability. Additionally, DMTs appeared to attenuate MS progression by reducing UBA1819 and upregulating CL(i-12:0/i-16:0/i-17:0/i-12:0). These findings expand our understanding of the microbiome and metabolome roles in RRMS and may contribute to identifying novel diagnostic biomarkers and promising therapeutic targets.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1042-1056"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscapes of gut microbiome and blood metabolomic signatures in relapsing remitting multiple sclerosis.\",\"authors\":\"Jinzhou Feng, Shi Tang, Xiaolin Yang, Mengjie Zhang, Zhizhong Li, Shaoru Zhang, Yongliang Han, Yongmei Li, Philippe P Monnier, Gang Yu, Peng Zheng, Cunjin Zhang, Ke Xu, Xinyue Qin\",\"doi\":\"10.1007/s11427-024-2653-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism. Notably, α-phylogenetic diversity was significantly decreased in RRMS patients during the chronic phase (CMS) compared with those in the acute phase (AMS). A distinctive combination of two elevated genera (Slackia, Lactobacillus) and five glycerophospholipid metabolism-associated metabolites (four increased: GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z)); one decreased: PS(15:0/22:1(13Z))) in RRMS patients when comparing to HCs. Moreover, a biomarker panel consisting of four microbial genera (three decreased: Lysinibacillus, Parabacteroides, UBA1819; one increased: Lachnoanaerobaculum) and two glycerophospholipid metabolism-associated metabolites (one increased: PE(P-16:0/22:6); one decreased: CL(i-12:0/i-16:0/i-17:0/i-12:0)) effectively discriminated CMS patients from AMS patients, which indicate correlation with higher disability. Additionally, DMTs appeared to attenuate MS progression by reducing UBA1819 and upregulating CL(i-12:0/i-16:0/i-17:0/i-12:0). These findings expand our understanding of the microbiome and metabolome roles in RRMS and may contribute to identifying novel diagnostic biomarkers and promising therapeutic targets.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"1042-1056\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2653-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2653-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管肠道微生物组紊乱与多发性硬化症(MS)有关,但肠道微生物组与血液代谢组之间的变化和相互作用,以及这些变化如何影响疾病修饰治疗(DMT)以预防MS进展,我们对此知之甚少。使用16S rRNA基因测序评估肠道微生物群的结构和组成,并使用非靶向代谢组学方法比较复发-缓解型MS (RRMS)患者和健康对照(hc)的血清代谢物谱。结果表明,RRMS具有相依赖性α-系统发育多样性,血清甘油磷脂代谢明显紊乱。值得注意的是,RRMS患者在慢性期(CMS)与急性期(AMS)相比,α-系统发育多样性明显降低。两个升高的属(Slackia, Lactobacillus)和五个甘油磷脂代谢相关代谢物的独特组合(四个增加:GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z));与hc患者相比,RRMS患者的PS(15:0/22:1(13Z))降低。此外,一个由四个微生物属组成的生物标志物面板(减少了三个:Lysinibacillus, Parabacteroides, UBA1819;1个增加:厌氧乳酸)和2个甘油磷脂代谢相关代谢物(1个增加:PE(P-16:0/22:6);1降低:CL(i-12:0/i-16:0/i-17:0/i-12:0))能有效区分CMS患者和AMS患者,表明其残疾程度较高。此外,dmt似乎通过降低UBA1819和上调CL(i-12:0/i-16:0/i-17:0/i-12:0)来减缓MS的进展。这些发现扩大了我们对微生物组和代谢组在RRMS中的作用的理解,并可能有助于确定新的诊断生物标志物和有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landscapes of gut microbiome and blood metabolomic signatures in relapsing remitting multiple sclerosis.

Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism. Notably, α-phylogenetic diversity was significantly decreased in RRMS patients during the chronic phase (CMS) compared with those in the acute phase (AMS). A distinctive combination of two elevated genera (Slackia, Lactobacillus) and five glycerophospholipid metabolism-associated metabolites (four increased: GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z)); one decreased: PS(15:0/22:1(13Z))) in RRMS patients when comparing to HCs. Moreover, a biomarker panel consisting of four microbial genera (three decreased: Lysinibacillus, Parabacteroides, UBA1819; one increased: Lachnoanaerobaculum) and two glycerophospholipid metabolism-associated metabolites (one increased: PE(P-16:0/22:6); one decreased: CL(i-12:0/i-16:0/i-17:0/i-12:0)) effectively discriminated CMS patients from AMS patients, which indicate correlation with higher disability. Additionally, DMTs appeared to attenuate MS progression by reducing UBA1819 and upregulating CL(i-12:0/i-16:0/i-17:0/i-12:0). These findings expand our understanding of the microbiome and metabolome roles in RRMS and may contribute to identifying novel diagnostic biomarkers and promising therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信