{"title":"在生殖衰老过程中,MIRO1不足导致卵母细胞质量下降。","authors":"Zhen-Nan Pan, Hao-Lin Zhang, Kun-Huan Zhang, Jia-Qian Ju, Jing-Cai Liu, Shao-Chen Sun","doi":"10.1007/s11427-024-2700-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice. MIRO1 deficiency caused the failure of meiotic resumption and polar body extrusion in both mouse and porcine oocytes, which could be rescued by exogenous MIRO1 supplementation. Mass spectrometry data indicated that MIRO1 associated with several cytoskeleton and cell cycle-related proteins, and MIRO1 regulated motor protein Dynein for microtubule-organizing centers (MTOCs) dynamics at germinal vesicle (GV) stage, which determined meiotic resumption. Furthermore, we found that MIRO1 regulated Aurora A and kinesin family member 11 (KIF11) for meiotic spindle assembly in oocytes. Besides, MIRO1 associated with several mitochondria-related proteins dynamic-related protein 1 (DRP1), Parkin and lysosomal-associated membrane protein 2 (LAMP2) for mitochondrial dynamics and mitophagy during oocyte meiosis. Taken together, our results suggested that MIRO1 played pivotal roles in meiotic resumption, spindle assembly and mitochondrial function in mouse and porcine oocytes, and its insufficiency might contribute to the oocyte maturation defects during aging.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"764-776"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insufficient MIRO1 contributes to declined oocyte quality during reproductive aging.\",\"authors\":\"Zhen-Nan Pan, Hao-Lin Zhang, Kun-Huan Zhang, Jia-Qian Ju, Jing-Cai Liu, Shao-Chen Sun\",\"doi\":\"10.1007/s11427-024-2700-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice. MIRO1 deficiency caused the failure of meiotic resumption and polar body extrusion in both mouse and porcine oocytes, which could be rescued by exogenous MIRO1 supplementation. Mass spectrometry data indicated that MIRO1 associated with several cytoskeleton and cell cycle-related proteins, and MIRO1 regulated motor protein Dynein for microtubule-organizing centers (MTOCs) dynamics at germinal vesicle (GV) stage, which determined meiotic resumption. Furthermore, we found that MIRO1 regulated Aurora A and kinesin family member 11 (KIF11) for meiotic spindle assembly in oocytes. Besides, MIRO1 associated with several mitochondria-related proteins dynamic-related protein 1 (DRP1), Parkin and lysosomal-associated membrane protein 2 (LAMP2) for mitochondrial dynamics and mitophagy during oocyte meiosis. Taken together, our results suggested that MIRO1 played pivotal roles in meiotic resumption, spindle assembly and mitochondrial function in mouse and porcine oocytes, and its insufficiency might contribute to the oocyte maturation defects during aging.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"764-776\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2700-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2700-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Insufficient MIRO1 contributes to declined oocyte quality during reproductive aging.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice. MIRO1 deficiency caused the failure of meiotic resumption and polar body extrusion in both mouse and porcine oocytes, which could be rescued by exogenous MIRO1 supplementation. Mass spectrometry data indicated that MIRO1 associated with several cytoskeleton and cell cycle-related proteins, and MIRO1 regulated motor protein Dynein for microtubule-organizing centers (MTOCs) dynamics at germinal vesicle (GV) stage, which determined meiotic resumption. Furthermore, we found that MIRO1 regulated Aurora A and kinesin family member 11 (KIF11) for meiotic spindle assembly in oocytes. Besides, MIRO1 associated with several mitochondria-related proteins dynamic-related protein 1 (DRP1), Parkin and lysosomal-associated membrane protein 2 (LAMP2) for mitochondrial dynamics and mitophagy during oocyte meiosis. Taken together, our results suggested that MIRO1 played pivotal roles in meiotic resumption, spindle assembly and mitochondrial function in mouse and porcine oocytes, and its insufficiency might contribute to the oocyte maturation defects during aging.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.