临床人工卵母细胞活化方案对小鼠卵活化和胚胎发育的影响比较。

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Reproduction Pub Date : 2025-01-01 DOI:10.1530/REP-24-0387
Lucas N González, Valeria Sulzyk, Patricia S Cuasnicú, Débora J Cohen
{"title":"临床人工卵母细胞活化方案对小鼠卵活化和胚胎发育的影响比较。","authors":"Lucas N González, Valeria Sulzyk, Patricia S Cuasnicú, Débora J Cohen","doi":"10.1530/REP-24-0387","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial oocyte activation (AOA) with Ca2+ ionophores is an experimental procedure that benefits patients who fail to obtain fertilized eggs. However, the impact of non-physiological Ca2+ increases on cellular events involved in egg-embryo transition and early development remains poorly understood. Using the mouse model, this study compares common Ca2+ ionophore protocols applied in clinical practice - one or two exposures to A23187 or a single exposure to ionomycin - focusing on embryonic development and cellular events associated with egg activation. All groups of ionophore-activated eggs exhibit lower levels of first mitotic division compared to those activated by spermatozoa or SrCl2, attributable to the variations in Ca2+ dynamics during activation. At the cellular level, these eggs presented defects in spindle morphology and chromosome segregation during meiosis progression, associated with lower levels of cytoplasmic ATP, without changes in reactive oxygen species (ROS). These findings highlight the importance of optimizing Ca2+ management in AOA protocols.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of clinical artificial oocyte activation protocols on mouse egg activation and embryo development.\",\"authors\":\"Lucas N González, Valeria Sulzyk, Patricia S Cuasnicú, Débora J Cohen\",\"doi\":\"10.1530/REP-24-0387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial oocyte activation (AOA) with Ca2+ ionophores is an experimental procedure that benefits patients who fail to obtain fertilized eggs. However, the impact of non-physiological Ca2+ increases on cellular events involved in egg-embryo transition and early development remains poorly understood. Using the mouse model, this study compares common Ca2+ ionophore protocols applied in clinical practice - one or two exposures to A23187 or a single exposure to ionomycin - focusing on embryonic development and cellular events associated with egg activation. All groups of ionophore-activated eggs exhibit lower levels of first mitotic division compared to those activated by spermatozoa or SrCl2, attributable to the variations in Ca2+ dynamics during activation. At the cellular level, these eggs presented defects in spindle morphology and chromosome segregation during meiosis progression, associated with lower levels of cytoplasmic ATP, without changes in reactive oxygen species (ROS). These findings highlight the importance of optimizing Ca2+ management in AOA protocols.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0387\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0387","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工卵母细胞活化(AOA)与Ca2+离子载体是一个实验程序,有利于患者谁不能获得受精卵。然而,非生理性Ca2+增加对参与卵胚过渡和早期发育的细胞事件的影响仍然知之甚少。使用小鼠模型,本研究比较了临床实践中应用的常见Ca2+离子载体方案-一次或两次暴露于A23187或单次暴露于离子霉素-重点关注胚胎发育和与卵子激活相关的细胞事件。与精子或SrCl2激活的卵子相比,所有离子体激活的卵子都表现出较低的第一次有丝分裂水平,这可归因于激活过程中Ca2+动力学的变化。在细胞水平上,这些卵在减数分裂过程中出现纺锤体形态和染色体分离的缺陷,与较低水平的细胞质ATP有关,而活性氧(ROS)没有变化。这些发现强调了优化AOA协议中Ca2+管理的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of clinical artificial oocyte activation protocols on mouse egg activation and embryo development.

Artificial oocyte activation (AOA) with Ca2+ ionophores is an experimental procedure that benefits patients who fail to obtain fertilized eggs. However, the impact of non-physiological Ca2+ increases on cellular events involved in egg-embryo transition and early development remains poorly understood. Using the mouse model, this study compares common Ca2+ ionophore protocols applied in clinical practice - one or two exposures to A23187 or a single exposure to ionomycin - focusing on embryonic development and cellular events associated with egg activation. All groups of ionophore-activated eggs exhibit lower levels of first mitotic division compared to those activated by spermatozoa or SrCl2, attributable to the variations in Ca2+ dynamics during activation. At the cellular level, these eggs presented defects in spindle morphology and chromosome segregation during meiosis progression, associated with lower levels of cytoplasmic ATP, without changes in reactive oxygen species (ROS). These findings highlight the importance of optimizing Ca2+ management in AOA protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信