Abdullah Haikal, Mahmoud Kamal, Eslam M Hosni, Yhiya Amen
{"title":"橙皮苷作为一种潜在的杀幼剂对库蚊的影响及其分子对接作用模式的计算预测。","authors":"Abdullah Haikal, Mahmoud Kamal, Eslam M Hosni, Yhiya Amen","doi":"10.1038/s41598-025-85760-2","DOIUrl":null,"url":null,"abstract":"<p><p>Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides. Hesperidin demonstrated potent larvicidal effects, with a lethal concentration 50 (LC<sub>50</sub>) of 570.3 ± 0.04 µg/mL, outperforming the conventional insecticide Chlorpyrifos 588.3 ± 0.28 µg/mL in efficacy. Molecular docking simulations revealed a strong binding affinity between Hesperidin and crucial neuroreceptors in Culex pipiens, particularly acetylcholinesterase (AChE), a key enzyme involved in nerve signal transmission. The interaction between Hesperidin's hydroxyl groups and the AChE enzyme's active site suggests that AChE inhibition is the primary mechanism driving Hesperidin's insecticidal action. These findings position Hesperidin as a promising, environmentally friendly alternative to synthetic insecticides. However, further research is needed to assess its toxicity to non-target organisms and optimize its formulation for broader application in mosquito control.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2677"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of hesperidin as a potential larvicide against Culex pipiens with computational prediction of its mode of action via molecular docking.\",\"authors\":\"Abdullah Haikal, Mahmoud Kamal, Eslam M Hosni, Yhiya Amen\",\"doi\":\"10.1038/s41598-025-85760-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides. Hesperidin demonstrated potent larvicidal effects, with a lethal concentration 50 (LC<sub>50</sub>) of 570.3 ± 0.04 µg/mL, outperforming the conventional insecticide Chlorpyrifos 588.3 ± 0.28 µg/mL in efficacy. Molecular docking simulations revealed a strong binding affinity between Hesperidin and crucial neuroreceptors in Culex pipiens, particularly acetylcholinesterase (AChE), a key enzyme involved in nerve signal transmission. The interaction between Hesperidin's hydroxyl groups and the AChE enzyme's active site suggests that AChE inhibition is the primary mechanism driving Hesperidin's insecticidal action. These findings position Hesperidin as a promising, environmentally friendly alternative to synthetic insecticides. However, further research is needed to assess its toxicity to non-target organisms and optimize its formulation for broader application in mosquito control.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2677\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85760-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85760-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluation of hesperidin as a potential larvicide against Culex pipiens with computational prediction of its mode of action via molecular docking.
Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides. Hesperidin demonstrated potent larvicidal effects, with a lethal concentration 50 (LC50) of 570.3 ± 0.04 µg/mL, outperforming the conventional insecticide Chlorpyrifos 588.3 ± 0.28 µg/mL in efficacy. Molecular docking simulations revealed a strong binding affinity between Hesperidin and crucial neuroreceptors in Culex pipiens, particularly acetylcholinesterase (AChE), a key enzyme involved in nerve signal transmission. The interaction between Hesperidin's hydroxyl groups and the AChE enzyme's active site suggests that AChE inhibition is the primary mechanism driving Hesperidin's insecticidal action. These findings position Hesperidin as a promising, environmentally friendly alternative to synthetic insecticides. However, further research is needed to assess its toxicity to non-target organisms and optimize its formulation for broader application in mosquito control.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.