{"title":"基于深度传递图卷积网络的非配对单细胞组学数据集成。","authors":"Yulong Kan, Yunjing Qi, Zhongxiao Zhang, Xikeng Liang, Weihao Wang, Shuilin Jin","doi":"10.1371/journal.pcbi.1012625","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advance of large-scale atlas-level single cell RNA sequences and single-cell chromatin accessibility data provide extraordinary avenues to broad and deep insight into complex biological mechanism. Leveraging the datasets and transfering labels from scRNA-seq to scATAC-seq will empower the exploration of single-cell omics data. However, the current label transfer methods have limited performance, largely due to the lower capable of preserving fine-grained cell populations and intrinsic or extrinsic heterogeneity between datasets. Here, we present a robust deep transfer model based graph convolutional network, scTGCN, which achieves versatile performance in preserving biological variation, while achieving integration hundreds of thousands cells in minutes with low memory consumption. We show that scTGCN is powerful to the integration of mouse atlas data and multimodal data generated from APSA-seq and CITE-seq. Thus, scTGCN shows high label transfer accuracy and effectively knowledge transfer across different modalities.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012625"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of unpaired single cell omics data by deep transfer graph convolutional network.\",\"authors\":\"Yulong Kan, Yunjing Qi, Zhongxiao Zhang, Xikeng Liang, Weihao Wang, Shuilin Jin\",\"doi\":\"10.1371/journal.pcbi.1012625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advance of large-scale atlas-level single cell RNA sequences and single-cell chromatin accessibility data provide extraordinary avenues to broad and deep insight into complex biological mechanism. Leveraging the datasets and transfering labels from scRNA-seq to scATAC-seq will empower the exploration of single-cell omics data. However, the current label transfer methods have limited performance, largely due to the lower capable of preserving fine-grained cell populations and intrinsic or extrinsic heterogeneity between datasets. Here, we present a robust deep transfer model based graph convolutional network, scTGCN, which achieves versatile performance in preserving biological variation, while achieving integration hundreds of thousands cells in minutes with low memory consumption. We show that scTGCN is powerful to the integration of mouse atlas data and multimodal data generated from APSA-seq and CITE-seq. Thus, scTGCN shows high label transfer accuracy and effectively knowledge transfer across different modalities.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 1\",\"pages\":\"e1012625\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012625\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012625","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integration of unpaired single cell omics data by deep transfer graph convolutional network.
The rapid advance of large-scale atlas-level single cell RNA sequences and single-cell chromatin accessibility data provide extraordinary avenues to broad and deep insight into complex biological mechanism. Leveraging the datasets and transfering labels from scRNA-seq to scATAC-seq will empower the exploration of single-cell omics data. However, the current label transfer methods have limited performance, largely due to the lower capable of preserving fine-grained cell populations and intrinsic or extrinsic heterogeneity between datasets. Here, we present a robust deep transfer model based graph convolutional network, scTGCN, which achieves versatile performance in preserving biological variation, while achieving integration hundreds of thousands cells in minutes with low memory consumption. We show that scTGCN is powerful to the integration of mouse atlas data and multimodal data generated from APSA-seq and CITE-seq. Thus, scTGCN shows high label transfer accuracy and effectively knowledge transfer across different modalities.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.