小RNA、转录组和降解组测序的综合分析:绘制甘薯块根发育的mirna基因调控网络。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Qiang Wu, Yuxi Chen, Wenqing Bi, Bin Tong, Aiqin Wang, Jie Zhan, Longfei He, Dong Xiao
{"title":"小RNA、转录组和降解组测序的综合分析:绘制甘薯块根发育的mirna基因调控网络。","authors":"Qiang Wu, Yuxi Chen, Wenqing Bi, Bin Tong, Aiqin Wang, Jie Zhan, Longfei He, Dong Xiao","doi":"10.1016/j.plaphy.2025.109510","DOIUrl":null,"url":null,"abstract":"<p><p>As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato. A total of 29,633 genes and 510 miRNAs were differential expressed among FRs, ITRs, TRs, and UFRs. Integrated analyses of these data revealed genes involved in metabolism, hormone response, and signal transduction that might participate in the induction of tuberous root formation, while genes involved in carbohydrate and energy metabolism that might participate in the tuberous root swelling. A joint analysis of miRNAs and DEGs related to tuber development revealed by degradome-seq identified twelve miRNA-target gene pairs involved in gene expression process, hormone response, and metabolism of secondary metabolites that might be key regulators of root tuber development in sweet potato. Moreover, the functions of many miRNA-target gene pairs involved in the initiation of root tuber were related to auxin signaling response, and an exogenous hormone treatment experiment was further performed. The results indicated that auxin treatment had the most significant effect on increasing sweet potato yield, suggesting a dominant role of the auxin pathway in the regulation of sweet potato tuberous root development. Additionally, two miRNA-target pairs, miR319-TCP4 and miR172-AP2, which were identified from the degradome, were verified via 5' RNA ligase-mediated rapid amplification of cDNA ends (RLR-RACE) and tobacco transient cotransformation tests, and their expression was impacted by auxin treatment, which further validated the reliability of our multiomics analysis results. Our research provides new insights into the role of miRNAs in sweet potato root tuber development.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109510"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.\",\"authors\":\"Qiang Wu, Yuxi Chen, Wenqing Bi, Bin Tong, Aiqin Wang, Jie Zhan, Longfei He, Dong Xiao\",\"doi\":\"10.1016/j.plaphy.2025.109510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato. A total of 29,633 genes and 510 miRNAs were differential expressed among FRs, ITRs, TRs, and UFRs. Integrated analyses of these data revealed genes involved in metabolism, hormone response, and signal transduction that might participate in the induction of tuberous root formation, while genes involved in carbohydrate and energy metabolism that might participate in the tuberous root swelling. A joint analysis of miRNAs and DEGs related to tuber development revealed by degradome-seq identified twelve miRNA-target gene pairs involved in gene expression process, hormone response, and metabolism of secondary metabolites that might be key regulators of root tuber development in sweet potato. Moreover, the functions of many miRNA-target gene pairs involved in the initiation of root tuber were related to auxin signaling response, and an exogenous hormone treatment experiment was further performed. The results indicated that auxin treatment had the most significant effect on increasing sweet potato yield, suggesting a dominant role of the auxin pathway in the regulation of sweet potato tuberous root development. Additionally, two miRNA-target pairs, miR319-TCP4 and miR172-AP2, which were identified from the degradome, were verified via 5' RNA ligase-mediated rapid amplification of cDNA ends (RLR-RACE) and tobacco transient cotransformation tests, and their expression was impacted by auxin treatment, which further validated the reliability of our multiomics analysis results. Our research provides new insights into the role of miRNAs in sweet potato root tuber development.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109510\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109510\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109510","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

甘薯作为一种重要的淀粉作物,对维护世界各国的粮食安全具有重要的现实意义。本研究通过比较初生期(起始结节根(ITRs))、快速膨大期(结节根(TRs))、苗期纤维根(FRs)和成虫期纤维根(未膨大FRs)的转录组,确定了与结节根膨大相关的差异表达基因。通过sRNA-seq和降解分析揭示了mirna在甘薯块根发育中的作用。FRs、ITRs、TRs和ufr中共有29633个基因和510个mirna差异表达。综合分析这些数据揭示了参与代谢、激素反应和信号转导的基因可能参与了诱导结节根形成,而参与碳水化合物和能量代谢的基因可能参与了结节根肿胀。利用降解组测序技术对甘薯块茎发育相关的mirna和DEGs进行了联合分析,发现了12对mirna靶基因对,这些基因对参与基因表达过程、激素反应和次生代谢物代谢,可能是甘薯块根发育的关键调控因子。此外,许多参与块根起始的mirna靶基因对的功能与生长素信号应答有关,并进一步进行了外源激素处理实验。结果表明,生长素处理对甘薯产量的提高效果最为显著,说明生长素途径在调控甘薯块根发育中起主导作用。此外,通过5′RNA连接酶介导的cDNA末端快速扩增(RLR-RACE)和烟草瞬态共转化试验验证了从降解组中鉴定到的miR319-TCP4和miR172-AP2两个mirna靶标对,它们的表达受到生长素处理的影响,进一步验证了我们多组学分析结果的可靠性。我们的研究为mirna在甘薯块根发育中的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato. A total of 29,633 genes and 510 miRNAs were differential expressed among FRs, ITRs, TRs, and UFRs. Integrated analyses of these data revealed genes involved in metabolism, hormone response, and signal transduction that might participate in the induction of tuberous root formation, while genes involved in carbohydrate and energy metabolism that might participate in the tuberous root swelling. A joint analysis of miRNAs and DEGs related to tuber development revealed by degradome-seq identified twelve miRNA-target gene pairs involved in gene expression process, hormone response, and metabolism of secondary metabolites that might be key regulators of root tuber development in sweet potato. Moreover, the functions of many miRNA-target gene pairs involved in the initiation of root tuber were related to auxin signaling response, and an exogenous hormone treatment experiment was further performed. The results indicated that auxin treatment had the most significant effect on increasing sweet potato yield, suggesting a dominant role of the auxin pathway in the regulation of sweet potato tuberous root development. Additionally, two miRNA-target pairs, miR319-TCP4 and miR172-AP2, which were identified from the degradome, were verified via 5' RNA ligase-mediated rapid amplification of cDNA ends (RLR-RACE) and tobacco transient cotransformation tests, and their expression was impacted by auxin treatment, which further validated the reliability of our multiomics analysis results. Our research provides new insights into the role of miRNAs in sweet potato root tuber development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信