{"title":"神经退行性疾病病理蛋白扩散的基于连接体的生物物理模型。","authors":"Peng Ren, Xuehua Cui, Xia Liang","doi":"10.1371/journal.pcbi.1012743","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking. In recent years, convergent experimental evidence supports the \"prion-like transmission\" assumption that abnormal proteins induce misfolding of normal proteins, and these misfolded proteins propagate throughout the neural networks to cause neuronal death. To elucidate this dynamic process in vivo from a computational perspective, researchers have proposed three connectome-based biophysical models to simulate the spread of pathological proteins: the Network Diffusion Model, the Epidemic Spreading Model, and the agent-based Susceptible-Infectious-Removed model. These models have demonstrated promising predictive capabilities. This review focuses on the explanations of their fundamental principles and applications. Then, we compare the strengths and weaknesses of the models. Building upon this foundation, we introduce new directions for model optimization and propose a unified framework for the evaluation of connectome-based biophysical models. We expect that this review could lower the entry barrier for researchers in this field, accelerate model optimization, and thereby advance the clinical translation of connectome-based biophysical models.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012743"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750110/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connectome-based biophysical models of pathological protein spreading in neurodegenerative diseases.\",\"authors\":\"Peng Ren, Xuehua Cui, Xia Liang\",\"doi\":\"10.1371/journal.pcbi.1012743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking. In recent years, convergent experimental evidence supports the \\\"prion-like transmission\\\" assumption that abnormal proteins induce misfolding of normal proteins, and these misfolded proteins propagate throughout the neural networks to cause neuronal death. To elucidate this dynamic process in vivo from a computational perspective, researchers have proposed three connectome-based biophysical models to simulate the spread of pathological proteins: the Network Diffusion Model, the Epidemic Spreading Model, and the agent-based Susceptible-Infectious-Removed model. These models have demonstrated promising predictive capabilities. This review focuses on the explanations of their fundamental principles and applications. Then, we compare the strengths and weaknesses of the models. Building upon this foundation, we introduce new directions for model optimization and propose a unified framework for the evaluation of connectome-based biophysical models. We expect that this review could lower the entry barrier for researchers in this field, accelerate model optimization, and thereby advance the clinical translation of connectome-based biophysical models.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 1\",\"pages\":\"e1012743\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012743\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Connectome-based biophysical models of pathological protein spreading in neurodegenerative diseases.
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking. In recent years, convergent experimental evidence supports the "prion-like transmission" assumption that abnormal proteins induce misfolding of normal proteins, and these misfolded proteins propagate throughout the neural networks to cause neuronal death. To elucidate this dynamic process in vivo from a computational perspective, researchers have proposed three connectome-based biophysical models to simulate the spread of pathological proteins: the Network Diffusion Model, the Epidemic Spreading Model, and the agent-based Susceptible-Infectious-Removed model. These models have demonstrated promising predictive capabilities. This review focuses on the explanations of their fundamental principles and applications. Then, we compare the strengths and weaknesses of the models. Building upon this foundation, we introduce new directions for model optimization and propose a unified framework for the evaluation of connectome-based biophysical models. We expect that this review could lower the entry barrier for researchers in this field, accelerate model optimization, and thereby advance the clinical translation of connectome-based biophysical models.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.