Ofir Katz, Renan Fernandes Moura, Michal Gruntman, Marcelo Sternberg
{"title":"植物离合素作为一种功能性状:跨生物气候区和功能群的变异。","authors":"Ofir Katz, Renan Fernandes Moura, Michal Gruntman, Marcelo Sternberg","doi":"10.1111/ppl.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions. The primary factors influencing variations in ionomes are predominantly attributed to bioclimatic factors rather than soil composition. Across all functional groups, plants from the Mediterranean region are characterised by greater association with calcium, whereas desert plants exhibit a higher affinity for strontium (Sr), suggesting its potential role in drought tolerance. Among functional groups, grasses uniquely exhibit distinct ionomic features, primarily due to their higher silicon (Si) concentrations. Plant species' affinities for certain elements and their interactions are likely driven by physiological constraints, whereas variations within a functional group are mostly driven by environmental conditions. We conclude that interactions among elements form physiological phenotypes shaped by natural selection under large-scale environmental variability, making plant ionome composition an important plant functional trait.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70076"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Plant Ionome as a Functional Trait: Variation across Bioclimatic Regions and Functional Groups.\",\"authors\":\"Ofir Katz, Renan Fernandes Moura, Michal Gruntman, Marcelo Sternberg\",\"doi\":\"10.1111/ppl.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions. The primary factors influencing variations in ionomes are predominantly attributed to bioclimatic factors rather than soil composition. Across all functional groups, plants from the Mediterranean region are characterised by greater association with calcium, whereas desert plants exhibit a higher affinity for strontium (Sr), suggesting its potential role in drought tolerance. Among functional groups, grasses uniquely exhibit distinct ionomic features, primarily due to their higher silicon (Si) concentrations. Plant species' affinities for certain elements and their interactions are likely driven by physiological constraints, whereas variations within a functional group are mostly driven by environmental conditions. We conclude that interactions among elements form physiological phenotypes shaped by natural selection under large-scale environmental variability, making plant ionome composition an important plant functional trait.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70076\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70076\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The Plant Ionome as a Functional Trait: Variation across Bioclimatic Regions and Functional Groups.
Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions. The primary factors influencing variations in ionomes are predominantly attributed to bioclimatic factors rather than soil composition. Across all functional groups, plants from the Mediterranean region are characterised by greater association with calcium, whereas desert plants exhibit a higher affinity for strontium (Sr), suggesting its potential role in drought tolerance. Among functional groups, grasses uniquely exhibit distinct ionomic features, primarily due to their higher silicon (Si) concentrations. Plant species' affinities for certain elements and their interactions are likely driven by physiological constraints, whereas variations within a functional group are mostly driven by environmental conditions. We conclude that interactions among elements form physiological phenotypes shaped by natural selection under large-scale environmental variability, making plant ionome composition an important plant functional trait.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.