{"title":"欧洲温带生态系统中本地和外来树种对水分胁迫和养分输入的响应","authors":"Morena Rolando, Paola Ganugi, Francesca Secchi, Daniel Said-Pullicino, Eleonora Bonifacio, Luisella Celi","doi":"10.1111/ppl.70070","DOIUrl":null,"url":null,"abstract":"<p><p>Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L. (RO) and the European Quercus robur L. (EO) oak species to drought and nutrient scarcity as single and combined factors. Both species were grown under well-watered or alternating short dry-wet phases, with or without the addition of phosphorous (P) and labelled nitrogen (N). Leaf gas exchanges and stem water potential were measured; moreover, leaf chemical characterization was carried out. Under concurrent low fertility and drought, both species reduced gas exchanges and stem water potential, although RO recovery was faster than EO. Nutrient inputs did not modulate RO's physiological response; however, P supply increased its uptake of the more available N forms (<sup>15</sup>NH<sub>4</sub> <sup>15</sup>NO<sub>3</sub>). The different leaf contents of N and P demonstrated that EO has lower nutrient use efficiency compared to RO. Nevertheless, P addition significantly mitigated the drought effects on EO, highlighting the crucial role of this nutrient in aiding EO's recovery under stress conditions. RO invasive potential may be linked to its superior adaptability and resource-use efficiency under combined abiotic stress. Nevertheless, EO competitiveness can be improved through targeted nutrient management.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70070"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Response of native (Quercus robur L.) and alien (Quercus rubra L.) species to water stress and nutrient input in European temperate ecosystems.\",\"authors\":\"Morena Rolando, Paola Ganugi, Francesca Secchi, Daniel Said-Pullicino, Eleonora Bonifacio, Luisella Celi\",\"doi\":\"10.1111/ppl.70070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L. (RO) and the European Quercus robur L. (EO) oak species to drought and nutrient scarcity as single and combined factors. Both species were grown under well-watered or alternating short dry-wet phases, with or without the addition of phosphorous (P) and labelled nitrogen (N). Leaf gas exchanges and stem water potential were measured; moreover, leaf chemical characterization was carried out. Under concurrent low fertility and drought, both species reduced gas exchanges and stem water potential, although RO recovery was faster than EO. Nutrient inputs did not modulate RO's physiological response; however, P supply increased its uptake of the more available N forms (<sup>15</sup>NH<sub>4</sub> <sup>15</sup>NO<sub>3</sub>). The different leaf contents of N and P demonstrated that EO has lower nutrient use efficiency compared to RO. Nevertheless, P addition significantly mitigated the drought effects on EO, highlighting the crucial role of this nutrient in aiding EO's recovery under stress conditions. RO invasive potential may be linked to its superior adaptability and resource-use efficiency under combined abiotic stress. Nevertheless, EO competitiveness can be improved through targeted nutrient management.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70070\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70070\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70070","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Response of native (Quercus robur L.) and alien (Quercus rubra L.) species to water stress and nutrient input in European temperate ecosystems.
Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L. (RO) and the European Quercus robur L. (EO) oak species to drought and nutrient scarcity as single and combined factors. Both species were grown under well-watered or alternating short dry-wet phases, with or without the addition of phosphorous (P) and labelled nitrogen (N). Leaf gas exchanges and stem water potential were measured; moreover, leaf chemical characterization was carried out. Under concurrent low fertility and drought, both species reduced gas exchanges and stem water potential, although RO recovery was faster than EO. Nutrient inputs did not modulate RO's physiological response; however, P supply increased its uptake of the more available N forms (15NH415NO3). The different leaf contents of N and P demonstrated that EO has lower nutrient use efficiency compared to RO. Nevertheless, P addition significantly mitigated the drought effects on EO, highlighting the crucial role of this nutrient in aiding EO's recovery under stress conditions. RO invasive potential may be linked to its superior adaptability and resource-use efficiency under combined abiotic stress. Nevertheless, EO competitiveness can be improved through targeted nutrient management.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.