Gregorio Barba-Espín, Carmen Jurado-Mañogil, Zuzana Plskova, Pavel I Kerchev, José A Hernández, Pedro Diaz-Vivancos
{"title":"盐生植物为基础的作物管理诱导生理盐水条件下番茄植株的生化、代谢组学和蛋白质组学变化。","authors":"Gregorio Barba-Espín, Carmen Jurado-Mañogil, Zuzana Plskova, Pavel I Kerchev, José A Hernández, Pedro Diaz-Vivancos","doi":"10.1111/ppl.70060","DOIUrl":null,"url":null,"abstract":"<p><p>Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.) was cultivated in moderately saline conditions under two different managements involving Arthrocaulon macrostachyum L., a salt accumulator shrub: intercropping, i.e., co-cultivation of tomato/halophyte; and crop rotation, in which tomato is grown where the halophyte was previously cultivated. The effect of these crop managements was evaluated in tomato plants in comparison with tomato in monoculture, with regards to physiological and biochemical variables and metabolomic and proteomic profiles. Both halophyte-based managements reduced soil salinity. Crop rotation enhanced photosynthesis and protective mechanisms at the photosynthetic level. In addition, both crop managements altered the hormone profile and the antioxidant capacity, whereas a reactive oxygen species over-accumulation in leaf tissues indicated the establishment of a controlled mild oxidative stress. However, tomato production remained unchanged. Metabolomic and proteomic approaches suggest complex interactions at the leaf level, driven by the influence of the halophyte. In this regard, an interplay of ROS/lipid-based signalling pathways is proposed. Moreover, improved photosynthesis under crop rotation was associated with accumulation of sugar metabolism-related compounds and photosynthesis-related proteins. Likewise, acylamino acid-releasing enzymes, a class of serine-proteases, remarkably increased under both halophyte-based managements, which may act to modulate the antioxidant capacity of tomato plants. In summary, this work reveals common and distinctive patterns in tomato under intercropping and crop rotation conditions with the halophyte, supporting the use of A. macrostachyum in farming systems.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70060"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Halophyte-based crop managements induce biochemical, metabolomic and proteomic changes in tomato plants under saline conditions.\",\"authors\":\"Gregorio Barba-Espín, Carmen Jurado-Mañogil, Zuzana Plskova, Pavel I Kerchev, José A Hernández, Pedro Diaz-Vivancos\",\"doi\":\"10.1111/ppl.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.) was cultivated in moderately saline conditions under two different managements involving Arthrocaulon macrostachyum L., a salt accumulator shrub: intercropping, i.e., co-cultivation of tomato/halophyte; and crop rotation, in which tomato is grown where the halophyte was previously cultivated. The effect of these crop managements was evaluated in tomato plants in comparison with tomato in monoculture, with regards to physiological and biochemical variables and metabolomic and proteomic profiles. Both halophyte-based managements reduced soil salinity. Crop rotation enhanced photosynthesis and protective mechanisms at the photosynthetic level. In addition, both crop managements altered the hormone profile and the antioxidant capacity, whereas a reactive oxygen species over-accumulation in leaf tissues indicated the establishment of a controlled mild oxidative stress. However, tomato production remained unchanged. Metabolomic and proteomic approaches suggest complex interactions at the leaf level, driven by the influence of the halophyte. In this regard, an interplay of ROS/lipid-based signalling pathways is proposed. Moreover, improved photosynthesis under crop rotation was associated with accumulation of sugar metabolism-related compounds and photosynthesis-related proteins. Likewise, acylamino acid-releasing enzymes, a class of serine-proteases, remarkably increased under both halophyte-based managements, which may act to modulate the antioxidant capacity of tomato plants. In summary, this work reveals common and distinctive patterns in tomato under intercropping and crop rotation conditions with the halophyte, supporting the use of A. macrostachyum in farming systems.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70060\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70060\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Halophyte-based crop managements induce biochemical, metabolomic and proteomic changes in tomato plants under saline conditions.
Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.) was cultivated in moderately saline conditions under two different managements involving Arthrocaulon macrostachyum L., a salt accumulator shrub: intercropping, i.e., co-cultivation of tomato/halophyte; and crop rotation, in which tomato is grown where the halophyte was previously cultivated. The effect of these crop managements was evaluated in tomato plants in comparison with tomato in monoculture, with regards to physiological and biochemical variables and metabolomic and proteomic profiles. Both halophyte-based managements reduced soil salinity. Crop rotation enhanced photosynthesis and protective mechanisms at the photosynthetic level. In addition, both crop managements altered the hormone profile and the antioxidant capacity, whereas a reactive oxygen species over-accumulation in leaf tissues indicated the establishment of a controlled mild oxidative stress. However, tomato production remained unchanged. Metabolomic and proteomic approaches suggest complex interactions at the leaf level, driven by the influence of the halophyte. In this regard, an interplay of ROS/lipid-based signalling pathways is proposed. Moreover, improved photosynthesis under crop rotation was associated with accumulation of sugar metabolism-related compounds and photosynthesis-related proteins. Likewise, acylamino acid-releasing enzymes, a class of serine-proteases, remarkably increased under both halophyte-based managements, which may act to modulate the antioxidant capacity of tomato plants. In summary, this work reveals common and distinctive patterns in tomato under intercropping and crop rotation conditions with the halophyte, supporting the use of A. macrostachyum in farming systems.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.