Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez
{"title":"鞘脂长链碱基作为橄榄果脱落细胞死亡的介质。","authors":"Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez","doi":"10.1111/ppl.70061","DOIUrl":null,"url":null,"abstract":"<p><p>Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70061"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sphingolipid long chain bases as mediators of cell death in olive fruit abscission.\",\"authors\":\"Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez\",\"doi\":\"10.1111/ppl.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70061\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70061\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Sphingolipid long chain bases as mediators of cell death in olive fruit abscission.
Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.