利用叶片叶绿素荧光实时监测进行光合照明的生物反馈控制。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Suyun Nam, Marc W van Iersel, Rhuanito Soranz Ferrarezi
{"title":"利用叶片叶绿素荧光实时监测进行光合照明的生物反馈控制。","authors":"Suyun Nam, Marc W van Iersel, Rhuanito Soranz Ferrarezi","doi":"10.1111/ppl.70073","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD). This study used the biofeedback system to maintain a range of target quantum yield of photosystem II (Φ<sub>PSII</sub>) and electron transport rate (ETR) values and to examine if the adjustment logic (Φ<sub>PSII</sub> or ETR-based) and crop type influence LED light intensity. The system was tested in a growth chamber with lettuce (Lactuca sativa) 'Green Towers' and cucumber (Cucumis sativus) 'Diva' to maintain six ETR levels (30, 50, 70, 90, 110, 130 μmol·m<sup>-2</sup>·s<sup>-1</sup>) and five Φ<sub>PSII</sub> levels (0.65, 0.675, 0.7, 0.725, 0.75) during a 16-hour photoperiod. The ETR-based biofeedback quickly stabilized the target ETR within 30-45 minutes, whereas the Φ<sub>PSII</sub>-based system needed more time. The system adjusted light intensities according to target values, acclimation status, and crop-specific responses. For example, to maintain a target ETR of 130 μmol·m<sup>-2</sup>·s<sup>-1</sup>, the gradual increase in Φ<sub>PSII</sub> over time due to light acclimation allowed the required PPFD to decrease by 35 μmol·m<sup>-2</sup>·s<sup>-1</sup>. Lettuce showed higher photosynthetic efficiency and lower heat dissipation than cucumber, leading to higher PPFD adjustments for lettuce. This biofeedback system effectively controls LED light, optimizing photosynthetic efficiency and potentially reducing lighting costs.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70073"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748110/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biofeedback control of photosynthetic lighting using real-time monitoring of leaf chlorophyll fluorescence.\",\"authors\":\"Suyun Nam, Marc W van Iersel, Rhuanito Soranz Ferrarezi\",\"doi\":\"10.1111/ppl.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD). This study used the biofeedback system to maintain a range of target quantum yield of photosystem II (Φ<sub>PSII</sub>) and electron transport rate (ETR) values and to examine if the adjustment logic (Φ<sub>PSII</sub> or ETR-based) and crop type influence LED light intensity. The system was tested in a growth chamber with lettuce (Lactuca sativa) 'Green Towers' and cucumber (Cucumis sativus) 'Diva' to maintain six ETR levels (30, 50, 70, 90, 110, 130 μmol·m<sup>-2</sup>·s<sup>-1</sup>) and five Φ<sub>PSII</sub> levels (0.65, 0.675, 0.7, 0.725, 0.75) during a 16-hour photoperiod. The ETR-based biofeedback quickly stabilized the target ETR within 30-45 minutes, whereas the Φ<sub>PSII</sub>-based system needed more time. The system adjusted light intensities according to target values, acclimation status, and crop-specific responses. For example, to maintain a target ETR of 130 μmol·m<sup>-2</sup>·s<sup>-1</sup>, the gradual increase in Φ<sub>PSII</sub> over time due to light acclimation allowed the required PPFD to decrease by 35 μmol·m<sup>-2</sup>·s<sup>-1</sup>. Lettuce showed higher photosynthetic efficiency and lower heat dissipation than cucumber, leading to higher PPFD adjustments for lettuce. This biofeedback system effectively controls LED light, optimizing photosynthetic efficiency and potentially reducing lighting costs.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70073\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70073\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70073","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在可控环境农业(CEA)中,优化光合照明对提高作物产量和降低电力成本至关重要。传统的光照方式往往忽略了环境因素、作物类型和光驯化对光合效率的影响。为了解决这个问题,研究人员开发了一种基于叶绿素荧光的生物反馈系统,根据植物的实时响应来调节发光二极管(LED)的强度,而不是使用固定的光合光子通量密度(PPFD)。本研究使用生物反馈系统来维持光系统II的目标量子产率(ΦPSII)和电子传递速率(ETR)值的范围,并检查调整逻辑(ΦPSII或基于etrs的)和作物类型是否影响LED光强。该系统在生菜生长室中进行了测试。绿塔和黄瓜(Cucumis sativus)“Diva”在16小时的光周期内维持6个ETR水平(30、50、70、90、110、130 μmol·m-2·s-1)和5个ΦPSII水平(0.65、0.675、0.7、0.725、0.75)。基于ETR的生物反馈在30-45分钟内迅速稳定了目标ETR,而ΦPSII-based系统需要更多的时间。该系统根据目标值、驯化状态和作物的特定反应来调整光照强度。例如,为了保持目标ETR为130 μmol·m-2·s-1,由于光驯化,ΦPSII随时间逐渐增加,所需的PPFD降低了35 μmol·m-2·s-1。生菜的光合效率比黄瓜高,而热量耗散比黄瓜低,这导致生菜的PPFD调节值更高。这种生物反馈系统有效地控制LED光,优化光合效率,并有可能降低照明成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofeedback control of photosynthetic lighting using real-time monitoring of leaf chlorophyll fluorescence.

Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD). This study used the biofeedback system to maintain a range of target quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR) values and to examine if the adjustment logic (ΦPSII or ETR-based) and crop type influence LED light intensity. The system was tested in a growth chamber with lettuce (Lactuca sativa) 'Green Towers' and cucumber (Cucumis sativus) 'Diva' to maintain six ETR levels (30, 50, 70, 90, 110, 130 μmol·m-2·s-1) and five ΦPSII levels (0.65, 0.675, 0.7, 0.725, 0.75) during a 16-hour photoperiod. The ETR-based biofeedback quickly stabilized the target ETR within 30-45 minutes, whereas the ΦPSII-based system needed more time. The system adjusted light intensities according to target values, acclimation status, and crop-specific responses. For example, to maintain a target ETR of 130 μmol·m-2·s-1, the gradual increase in ΦPSII over time due to light acclimation allowed the required PPFD to decrease by 35 μmol·m-2·s-1. Lettuce showed higher photosynthetic efficiency and lower heat dissipation than cucumber, leading to higher PPFD adjustments for lettuce. This biofeedback system effectively controls LED light, optimizing photosynthetic efficiency and potentially reducing lighting costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信