基因组组装和多组学分析揭示了对紫薇花和树皮颜色的见解。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Zhongquan Qiao, Yi Chen, Xiaoming Wang, Yongxin Li, Sisi Liu, Fuyuan Deng, Dezhi Liao, Neng Cai, Huijie Zeng, Jianjun Chen
{"title":"基因组组装和多组学分析揭示了对紫薇花和树皮颜色的见解。","authors":"Zhongquan Qiao, Yi Chen, Xiaoming Wang, Yongxin Li, Sisi Liu, Fuyuan Deng, Dezhi Liao, Neng Cai, Huijie Zeng, Jianjun Chen","doi":"10.1016/j.plaphy.2025.109482","DOIUrl":null,"url":null,"abstract":"<p><p>Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L. excelsa was obtained via whole-genome sequencing. Results showed that its genome size is about 330.4 Mb and a scaffold mapping rate is approximately 97.20%, resulting in 24 pseudochromosomes. L. excelsa might have undergone a recent whole-genome triplication event and diverged from the pomegranate about 32.3 million years ago (MYA). Subsequently, the divergence time between L. indica and L. excelsa was around 5.9 MYA. The transcriptomic and metabolomic analyses of L. excelsa and L. indica indicated that the chalcone synthase pathway may play a key role in regulating flower color differentiation between the two species. Additionally, a transcription factor LeMYB103 may be involved in regulating anthocyanin synthesis by interacting with LeMYB66, resulting in the accumulation of anthocyanins in the stem bark. This study is the first step toward genomic analysis of L. excelsa, which may provide a foundation for further molecular investigation of this species and offer valuable insights into the molecular mechanisms underlying the flower and stem bark colors in L. excelsa, two important ornamental traits in Lagerstroemia breeding.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109482"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome assembly and multiomic analyses reveal insights into flower and bark colors of Lagerstroemia excelsa.\",\"authors\":\"Zhongquan Qiao, Yi Chen, Xiaoming Wang, Yongxin Li, Sisi Liu, Fuyuan Deng, Dezhi Liao, Neng Cai, Huijie Zeng, Jianjun Chen\",\"doi\":\"10.1016/j.plaphy.2025.109482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L. excelsa was obtained via whole-genome sequencing. Results showed that its genome size is about 330.4 Mb and a scaffold mapping rate is approximately 97.20%, resulting in 24 pseudochromosomes. L. excelsa might have undergone a recent whole-genome triplication event and diverged from the pomegranate about 32.3 million years ago (MYA). Subsequently, the divergence time between L. indica and L. excelsa was around 5.9 MYA. The transcriptomic and metabolomic analyses of L. excelsa and L. indica indicated that the chalcone synthase pathway may play a key role in regulating flower color differentiation between the two species. Additionally, a transcription factor LeMYB103 may be involved in regulating anthocyanin synthesis by interacting with LeMYB66, resulting in the accumulation of anthocyanins in the stem bark. This study is the first step toward genomic analysis of L. excelsa, which may provide a foundation for further molecular investigation of this species and offer valuable insights into the molecular mechanisms underlying the flower and stem bark colors in L. excelsa, two important ornamental traits in Lagerstroemia breeding.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109482\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109482\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109482","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

紫薇(Lagerstroemia excelsa)是中国特有的植物,具有重要的美学和经济价值,在园林和园艺中起着至关重要的作用。到目前为止,关于该物种的遗传和基因组信息很少,这限制了其在新品种开发中的应用。本研究通过全基因组测序获得了高质量的L. excelsa基因组图谱。结果表明,其基因组大小约为330.4 Mb,支架定位率约为97.20%,产生24条假染色体。L. excelsa可能经历了最近的全基因组三倍复制事件,并在3230万年前(MYA)从石榴中分离出来。随后,籼稻与excelsa的分化时间约为5.9 MYA。通过转录组学和代谢组学分析,表明查尔酮合成酶途径可能在两种植物的花色分化调控中起关键作用。此外,一种转录因子LeMYB103可能通过与LeMYB66相互作用来调节花青素的合成,从而导致花青素在茎皮中的积累。本研究是对大叶紫薇进行基因组分析的第一步,为进一步开展大叶紫薇的分子研究奠定了基础,并为大叶紫薇花和茎皮颜色这两个重要观赏性状的分子机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome assembly and multiomic analyses reveal insights into flower and bark colors of Lagerstroemia excelsa.

Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L. excelsa was obtained via whole-genome sequencing. Results showed that its genome size is about 330.4 Mb and a scaffold mapping rate is approximately 97.20%, resulting in 24 pseudochromosomes. L. excelsa might have undergone a recent whole-genome triplication event and diverged from the pomegranate about 32.3 million years ago (MYA). Subsequently, the divergence time between L. indica and L. excelsa was around 5.9 MYA. The transcriptomic and metabolomic analyses of L. excelsa and L. indica indicated that the chalcone synthase pathway may play a key role in regulating flower color differentiation between the two species. Additionally, a transcription factor LeMYB103 may be involved in regulating anthocyanin synthesis by interacting with LeMYB66, resulting in the accumulation of anthocyanins in the stem bark. This study is the first step toward genomic analysis of L. excelsa, which may provide a foundation for further molecular investigation of this species and offer valuable insights into the molecular mechanisms underlying the flower and stem bark colors in L. excelsa, two important ornamental traits in Lagerstroemia breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信