Hongjing Sun, Michele M Kim, Yi Hong Ong, Andreea Dimofte, Sunil Singhal, Theresa M Busch, Keith A Cengel, Timothy C Zhu
{"title":"应用标准化解剖坐标对胸膜光动力治疗中光通量分布的综合再分析。","authors":"Hongjing Sun, Michele M Kim, Yi Hong Ong, Andreea Dimofte, Sunil Singhal, Theresa M Busch, Keith A Cengel, Timothy C Zhu","doi":"10.1111/php.14063","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has shown promise as an adjuvant treatment for malignant pleural mesothelioma when combined with surgical resection. Accurate light dosimetry is critical for treatment efficacy. This study presents an improved method for analyzing light fluence distribution in pleural PDT using a standardized anatomical coordinate system and advanced computational modeling. We utilized an infrared navigation system with an improved treatment delivery wand to track light delivery in real-time. The human chest cavity geometry was reconstructed and the pleura was mapped to a standardized coordinate system, allowing for direct comparisons across patients. Light fluence was calculated using both primary and scattered components, with a novel dual correction method applied to match measured values at detector locations. The standardized approach allowed for statistical analysis of light fluence distribution across anatomical regions in a cohort of 11 patients. Results showed acceptable light fluence uniformity with a standard deviation of 6.6% from the prescribed dose across patients. This comprehensive analysis provides insights for optimizing treatment protocols and lays the groundwork for future studies on singlet oxygen generation and its correlation with treatment outcomes in pleural PDT.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive reanalysis of light fluence distribution in pleural photodynamic therapy using standardized anatomical coordinates.\",\"authors\":\"Hongjing Sun, Michele M Kim, Yi Hong Ong, Andreea Dimofte, Sunil Singhal, Theresa M Busch, Keith A Cengel, Timothy C Zhu\",\"doi\":\"10.1111/php.14063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) has shown promise as an adjuvant treatment for malignant pleural mesothelioma when combined with surgical resection. Accurate light dosimetry is critical for treatment efficacy. This study presents an improved method for analyzing light fluence distribution in pleural PDT using a standardized anatomical coordinate system and advanced computational modeling. We utilized an infrared navigation system with an improved treatment delivery wand to track light delivery in real-time. The human chest cavity geometry was reconstructed and the pleura was mapped to a standardized coordinate system, allowing for direct comparisons across patients. Light fluence was calculated using both primary and scattered components, with a novel dual correction method applied to match measured values at detector locations. The standardized approach allowed for statistical analysis of light fluence distribution across anatomical regions in a cohort of 11 patients. Results showed acceptable light fluence uniformity with a standard deviation of 6.6% from the prescribed dose across patients. This comprehensive analysis provides insights for optimizing treatment protocols and lays the groundwork for future studies on singlet oxygen generation and its correlation with treatment outcomes in pleural PDT.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14063\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive reanalysis of light fluence distribution in pleural photodynamic therapy using standardized anatomical coordinates.
Photodynamic therapy (PDT) has shown promise as an adjuvant treatment for malignant pleural mesothelioma when combined with surgical resection. Accurate light dosimetry is critical for treatment efficacy. This study presents an improved method for analyzing light fluence distribution in pleural PDT using a standardized anatomical coordinate system and advanced computational modeling. We utilized an infrared navigation system with an improved treatment delivery wand to track light delivery in real-time. The human chest cavity geometry was reconstructed and the pleura was mapped to a standardized coordinate system, allowing for direct comparisons across patients. Light fluence was calculated using both primary and scattered components, with a novel dual correction method applied to match measured values at detector locations. The standardized approach allowed for statistical analysis of light fluence distribution across anatomical regions in a cohort of 11 patients. Results showed acceptable light fluence uniformity with a standard deviation of 6.6% from the prescribed dose across patients. This comprehensive analysis provides insights for optimizing treatment protocols and lays the groundwork for future studies on singlet oxygen generation and its correlation with treatment outcomes in pleural PDT.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.