{"title":"13C标记后连续两年苹果幼树早春贮藏碳对新器官发育的影响。","authors":"Shogo Imada, Yasuhiro Tako","doi":"10.1111/ppl.70077","DOIUrl":null,"url":null,"abstract":"<p><p>The use of stored carbon is essential for new organ development in deciduous trees during early spring. However, the contribution of carbon to the development of new organs in early spring of subsequent years is not well understood. Using a <sup>13</sup>C labelling approach, we investigated the reallocation of assimilated carbon into new aboveground organs on apple (Malus domestica) saplings in the following two years. Eight three-year-old potted saplings were exposed to <sup>13</sup>CO<sub>2</sub> in an exposure chamber on each of eight different dates during the growth season. Some of the trees were harvested in the late autumn of the same year. The remaining trees were transferred to a field and cultivated during the two following growing seasons. We directly showed that the assimilated <sup>13</sup>C was used to develop terminal and flower buds for two consecutive years after labelling. The proportions of the concentration of <sup>13</sup>C remobilized to the terminal and flower buds in the second year were 5 and 24% of those in the first year after labelling, respectively. The concentration of assimilated <sup>13</sup>C was higher in the terminal buds than in the flower buds in the first year after the labelling, while opposite results were found in the second year. This study demonstrates that the stored carbon used for the development of new organs was a mixture of recent- and old-stored carbon and indicates that recently-stored carbon was preferentially used to develop new organs. We also indicated that the stored carbon was remobilized to flower buds during development.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70077"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of stored carbon for new organ development in apple saplings in early spring for two consecutive years after <sup>13</sup>C labelling.\",\"authors\":\"Shogo Imada, Yasuhiro Tako\",\"doi\":\"10.1111/ppl.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of stored carbon is essential for new organ development in deciduous trees during early spring. However, the contribution of carbon to the development of new organs in early spring of subsequent years is not well understood. Using a <sup>13</sup>C labelling approach, we investigated the reallocation of assimilated carbon into new aboveground organs on apple (Malus domestica) saplings in the following two years. Eight three-year-old potted saplings were exposed to <sup>13</sup>CO<sub>2</sub> in an exposure chamber on each of eight different dates during the growth season. Some of the trees were harvested in the late autumn of the same year. The remaining trees were transferred to a field and cultivated during the two following growing seasons. We directly showed that the assimilated <sup>13</sup>C was used to develop terminal and flower buds for two consecutive years after labelling. The proportions of the concentration of <sup>13</sup>C remobilized to the terminal and flower buds in the second year were 5 and 24% of those in the first year after labelling, respectively. The concentration of assimilated <sup>13</sup>C was higher in the terminal buds than in the flower buds in the first year after the labelling, while opposite results were found in the second year. This study demonstrates that the stored carbon used for the development of new organs was a mixture of recent- and old-stored carbon and indicates that recently-stored carbon was preferentially used to develop new organs. We also indicated that the stored carbon was remobilized to flower buds during development.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70077\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70077\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Use of stored carbon for new organ development in apple saplings in early spring for two consecutive years after 13C labelling.
The use of stored carbon is essential for new organ development in deciduous trees during early spring. However, the contribution of carbon to the development of new organs in early spring of subsequent years is not well understood. Using a 13C labelling approach, we investigated the reallocation of assimilated carbon into new aboveground organs on apple (Malus domestica) saplings in the following two years. Eight three-year-old potted saplings were exposed to 13CO2 in an exposure chamber on each of eight different dates during the growth season. Some of the trees were harvested in the late autumn of the same year. The remaining trees were transferred to a field and cultivated during the two following growing seasons. We directly showed that the assimilated 13C was used to develop terminal and flower buds for two consecutive years after labelling. The proportions of the concentration of 13C remobilized to the terminal and flower buds in the second year were 5 and 24% of those in the first year after labelling, respectively. The concentration of assimilated 13C was higher in the terminal buds than in the flower buds in the first year after the labelling, while opposite results were found in the second year. This study demonstrates that the stored carbon used for the development of new organs was a mixture of recent- and old-stored carbon and indicates that recently-stored carbon was preferentially used to develop new organs. We also indicated that the stored carbon was remobilized to flower buds during development.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.