{"title":"一种节省时间和可扩展的协议的基准,用于从不同的病毒中提取DNA。","authors":"Michael Shamash, Saniya Kapoor, Corinne F Maurice","doi":"10.7717/peerj.18785","DOIUrl":null,"url":null,"abstract":"<p><p>The virome, composed of viruses inhabiting diverse ecosystems, significantly influences microbial community dynamics and host health. The phenol-chloroform DNA extraction protocol for viromes, though effective, is time-intensive and requires the use of multiple toxic chemicals. This study introduces a streamlined, scalable protocol for DNA extraction using a commercially-available kit as an alternative, assessing its performance against the phenol-chloroform method across human fecal, mouse fecal, and soil samples. No significant differences in virome diversity or community composition were seen between methods. Most viral operational taxonomic units (vOTUs) were common to both methods, with only a small percentage unique to either approach. Alpha- and beta-diversity analyses showed no significant impact of the extraction method on virome composition, confirming the kit's efficacy and versatility on sample types beyond those officially supported by the manufacturer. While the kit approach offers benefits like reduced toxicity and increased throughput, it has limitations such as higher costs and potential issues reliably capturing low-abundance taxa. This protocol provides a viable option for large-scale virome studies, although the phenol-chloroform approach may still be preferable for specific sample types.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18785"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740735/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking of a time-saving and scalable protocol for the extraction of DNA from diverse viromes.\",\"authors\":\"Michael Shamash, Saniya Kapoor, Corinne F Maurice\",\"doi\":\"10.7717/peerj.18785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The virome, composed of viruses inhabiting diverse ecosystems, significantly influences microbial community dynamics and host health. The phenol-chloroform DNA extraction protocol for viromes, though effective, is time-intensive and requires the use of multiple toxic chemicals. This study introduces a streamlined, scalable protocol for DNA extraction using a commercially-available kit as an alternative, assessing its performance against the phenol-chloroform method across human fecal, mouse fecal, and soil samples. No significant differences in virome diversity or community composition were seen between methods. Most viral operational taxonomic units (vOTUs) were common to both methods, with only a small percentage unique to either approach. Alpha- and beta-diversity analyses showed no significant impact of the extraction method on virome composition, confirming the kit's efficacy and versatility on sample types beyond those officially supported by the manufacturer. While the kit approach offers benefits like reduced toxicity and increased throughput, it has limitations such as higher costs and potential issues reliably capturing low-abundance taxa. This protocol provides a viable option for large-scale virome studies, although the phenol-chloroform approach may still be preferable for specific sample types.</p>\",\"PeriodicalId\":19799,\"journal\":{\"name\":\"PeerJ\",\"volume\":\"13 \",\"pages\":\"e18785\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740735/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj.18785\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18785","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Benchmarking of a time-saving and scalable protocol for the extraction of DNA from diverse viromes.
The virome, composed of viruses inhabiting diverse ecosystems, significantly influences microbial community dynamics and host health. The phenol-chloroform DNA extraction protocol for viromes, though effective, is time-intensive and requires the use of multiple toxic chemicals. This study introduces a streamlined, scalable protocol for DNA extraction using a commercially-available kit as an alternative, assessing its performance against the phenol-chloroform method across human fecal, mouse fecal, and soil samples. No significant differences in virome diversity or community composition were seen between methods. Most viral operational taxonomic units (vOTUs) were common to both methods, with only a small percentage unique to either approach. Alpha- and beta-diversity analyses showed no significant impact of the extraction method on virome composition, confirming the kit's efficacy and versatility on sample types beyond those officially supported by the manufacturer. While the kit approach offers benefits like reduced toxicity and increased throughput, it has limitations such as higher costs and potential issues reliably capturing low-abundance taxa. This protocol provides a viable option for large-scale virome studies, although the phenol-chloroform approach may still be preferable for specific sample types.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.