{"title":"能在海胆中合成各种C20多不饱和脂肪酸的酶。","authors":"Yingying Peng, Yutaka Haga, Naoki Kabeya","doi":"10.1098/rsob.240170","DOIUrl":null,"url":null,"abstract":"<p><p>Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C<sub>20</sub>) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2<sup>Δ5,11</sup>. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on <i>Hemicentrotus pulcherrimus</i> has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes. Functional analysis showed that FadsA and FadsC2 function as a Δ5 desaturase and a Δ8 desaturase, respectively, enabling the conversion of 18:2n-6 and 18:3n-3 into ARA and EPA, respectively, along with Elovl, particularly Elovl6-like C. Elovl6-like C demonstrates elongase activity towards both C<sub>18</sub> PUFA and monounsaturated fatty acids. Consequently, FadsA and Elovl6-like C enable the synthesis of several NMI-FA, including 20:2<sup>Δ5,11</sup> and 20:3<sup>Δ5,11,14</sup>, from C<sub>18</sub> precursors. This indicates that <i>H. pulcherrimus</i> can endogenously synthesize a wide variety of C<sub>20</sub> PUFA and NMI-FA, highlighting active biosynthesis pathways within sea urchins.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 1","pages":"240170"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750391/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enzymes enabling the biosynthesis of various C<sub>20</sub> polyunsaturated fatty acids in a sea urchin <i>Hemicentrotus pulcherrimus</i>.\",\"authors\":\"Yingying Peng, Yutaka Haga, Naoki Kabeya\",\"doi\":\"10.1098/rsob.240170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C<sub>20</sub>) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2<sup>Δ5,11</sup>. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on <i>Hemicentrotus pulcherrimus</i> has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes. Functional analysis showed that FadsA and FadsC2 function as a Δ5 desaturase and a Δ8 desaturase, respectively, enabling the conversion of 18:2n-6 and 18:3n-3 into ARA and EPA, respectively, along with Elovl, particularly Elovl6-like C. Elovl6-like C demonstrates elongase activity towards both C<sub>18</sub> PUFA and monounsaturated fatty acids. Consequently, FadsA and Elovl6-like C enable the synthesis of several NMI-FA, including 20:2<sup>Δ5,11</sup> and 20:3<sup>Δ5,11,14</sup>, from C<sub>18</sub> precursors. This indicates that <i>H. pulcherrimus</i> can endogenously synthesize a wide variety of C<sub>20</sub> PUFA and NMI-FA, highlighting active biosynthesis pathways within sea urchins.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 1\",\"pages\":\"240170\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240170\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240170","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enzymes enabling the biosynthesis of various C20 polyunsaturated fatty acids in a sea urchin Hemicentrotus pulcherrimus.
Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C20) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2Δ5,11. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on Hemicentrotus pulcherrimus has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes. Functional analysis showed that FadsA and FadsC2 function as a Δ5 desaturase and a Δ8 desaturase, respectively, enabling the conversion of 18:2n-6 and 18:3n-3 into ARA and EPA, respectively, along with Elovl, particularly Elovl6-like C. Elovl6-like C demonstrates elongase activity towards both C18 PUFA and monounsaturated fatty acids. Consequently, FadsA and Elovl6-like C enable the synthesis of several NMI-FA, including 20:2Δ5,11 and 20:3Δ5,11,14, from C18 precursors. This indicates that H. pulcherrimus can endogenously synthesize a wide variety of C20 PUFA and NMI-FA, highlighting active biosynthesis pathways within sea urchins.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.